Loading…

Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System

This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand whi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.142411-142432
Main Authors: D., Sandeep S., Mohanty, Satyajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3
container_end_page 142432
container_issue
container_start_page 142411
container_title IEEE access
container_volume 11
creator D., Sandeep S.
Mohanty, Satyajit
description This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.
doi_str_mv 10.1109/ACCESS.2023.3340856
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2418b68b873048da94a348dfdb533972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10348575</ieee_id><doaj_id>oai_doaj_org_article_2418b68b873048da94a348dfdb533972</doaj_id><sourcerecordid>2904709074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</originalsourceid><addsrcrecordid>eNpNUduO0zAQjRBIrJb9AniwxOumOHYc24_dUKDSXhAFXq3xJZVLGwfbFSp_wR_jJRXaeZnRmTnH4zlV9brBi6bB8t2y71ebzYJgQheUtliw7ll1QZpO1pTR7vmT-mV1ldIOlxAFYvyi-rOM2Q_eeNijL6C1zwk9TNkf_G9n0b07xtK4d_lXiD_qG0gFXI0ubk_oDkbYuoMbM9qcUnYHNISIPn-_RjeQs4unawSjRZvj5KKBCYzPpT9LrFPYQy7F-x7deRPDNnp7lnlVvRhgn9zVOV9W3z6svvaf6tuHj-t-eVsbymSupbW2pazjEgthRMs4MbzrOqkNtmCcGaTmQhJqnW4EtabBAGQYuDBMaGPpZbWedW2AnZqiP0A8qQBe_QNC3CootzF7p0jbCN0JLTjFrbAgW6AlD1YzSiUnRevtrDXF8PPoUla7cIxjWV8RiVuOJeZtmaLzVPlwStEN_19tsHq0Us1Wqkcr1dnKwnozs7xz7gmjbMA4o38BboebUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904709074</pqid></control><display><type>article</type><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><source>IEEE Open Access Journals</source><creator>D., Sandeep S. ; Mohanty, Satyajit</creator><creatorcontrib>D., Sandeep S. ; Mohanty, Satyajit</creatorcontrib><description>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3340856</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural network ; Artificial neural networks ; artificial rabbits optimization ; Batteries ; Costs ; Data buses ; DC machines ; DC microgrid ; Distributed generation ; Electric potential ; Energy management ; energy management system ; Energy management systems ; Energy storage ; Incremental conductance ; Maximum power tracking ; Microgrids ; Modulators ; Neural networks ; Optimization methods ; Power management ; PV system ; Rabbits ; Regulators ; storage system ; Supercapacitors ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2023, Vol.11, p.142411-142432</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</cites><orcidid>0000-0003-2109-5697 ; 0000-0001-7245-5555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10348575$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>D., Sandeep S.</creatorcontrib><creatorcontrib>Mohanty, Satyajit</creatorcontrib><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>artificial rabbits optimization</subject><subject>Batteries</subject><subject>Costs</subject><subject>Data buses</subject><subject>DC machines</subject><subject>DC microgrid</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Energy management</subject><subject>energy management system</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Incremental conductance</subject><subject>Maximum power tracking</subject><subject>Microgrids</subject><subject>Modulators</subject><subject>Neural networks</subject><subject>Optimization methods</subject><subject>Power management</subject><subject>PV system</subject><subject>Rabbits</subject><subject>Regulators</subject><subject>storage system</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUduO0zAQjRBIrJb9AniwxOumOHYc24_dUKDSXhAFXq3xJZVLGwfbFSp_wR_jJRXaeZnRmTnH4zlV9brBi6bB8t2y71ebzYJgQheUtliw7ll1QZpO1pTR7vmT-mV1ldIOlxAFYvyi-rOM2Q_eeNijL6C1zwk9TNkf_G9n0b07xtK4d_lXiD_qG0gFXI0ubk_oDkbYuoMbM9qcUnYHNISIPn-_RjeQs4unawSjRZvj5KKBCYzPpT9LrFPYQy7F-x7deRPDNnp7lnlVvRhgn9zVOV9W3z6svvaf6tuHj-t-eVsbymSupbW2pazjEgthRMs4MbzrOqkNtmCcGaTmQhJqnW4EtabBAGQYuDBMaGPpZbWedW2AnZqiP0A8qQBe_QNC3CootzF7p0jbCN0JLTjFrbAgW6AlD1YzSiUnRevtrDXF8PPoUla7cIxjWV8RiVuOJeZtmaLzVPlwStEN_19tsHq0Us1Wqkcr1dnKwnozs7xz7gmjbMA4o38BboebUQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>D., Sandeep S.</creator><creator>Mohanty, Satyajit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2109-5697</orcidid><orcidid>https://orcid.org/0000-0001-7245-5555</orcidid></search><sort><creationdate>2023</creationdate><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><author>D., Sandeep S. ; Mohanty, Satyajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>artificial rabbits optimization</topic><topic>Batteries</topic><topic>Costs</topic><topic>Data buses</topic><topic>DC machines</topic><topic>DC microgrid</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Energy management</topic><topic>energy management system</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Incremental conductance</topic><topic>Maximum power tracking</topic><topic>Microgrids</topic><topic>Modulators</topic><topic>Neural networks</topic><topic>Optimization methods</topic><topic>Power management</topic><topic>PV system</topic><topic>Rabbits</topic><topic>Regulators</topic><topic>storage system</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D., Sandeep S.</creatorcontrib><creatorcontrib>Mohanty, Satyajit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D., Sandeep S.</au><au>Mohanty, Satyajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>142411</spage><epage>142432</epage><pages>142411-142432</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3340856</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2109-5697</orcidid><orcidid>https://orcid.org/0000-0001-7245-5555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.142411-142432
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2418b68b873048da94a348dfdb533972
source IEEE Open Access Journals
subjects Artificial neural network
Artificial neural networks
artificial rabbits optimization
Batteries
Costs
Data buses
DC machines
DC microgrid
Distributed generation
Electric potential
Energy management
energy management system
Energy management systems
Energy storage
Incremental conductance
Maximum power tracking
Microgrids
Modulators
Neural networks
Optimization methods
Power management
PV system
Rabbits
Regulators
storage system
Supercapacitors
Voltage
Voltage control
title Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Rabbits%20Optimized%20Neural%20Network-Based%20Energy%20Management%20System%20for%20PV,%20Battery,%20and%20Supercapacitor%20Based%20Isolated%20DC%20Microgrid%20System&rft.jtitle=IEEE%20access&rft.au=D.,%20Sandeep%20S.&rft.date=2023&rft.volume=11&rft.spage=142411&rft.epage=142432&rft.pages=142411-142432&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3340856&rft_dat=%3Cproquest_doaj_%3E2904709074%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904709074&rft_id=info:pmid/&rft_ieee_id=10348575&rfr_iscdi=true