Loading…
Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System
This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand whi...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.142411-142432 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3 |
container_end_page | 142432 |
container_issue | |
container_start_page | 142411 |
container_title | IEEE access |
container_volume | 11 |
creator | D., Sandeep S. Mohanty, Satyajit |
description | This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation. |
doi_str_mv | 10.1109/ACCESS.2023.3340856 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2418b68b873048da94a348dfdb533972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10348575</ieee_id><doaj_id>oai_doaj_org_article_2418b68b873048da94a348dfdb533972</doaj_id><sourcerecordid>2904709074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</originalsourceid><addsrcrecordid>eNpNUduO0zAQjRBIrJb9AniwxOumOHYc24_dUKDSXhAFXq3xJZVLGwfbFSp_wR_jJRXaeZnRmTnH4zlV9brBi6bB8t2y71ebzYJgQheUtliw7ll1QZpO1pTR7vmT-mV1ldIOlxAFYvyi-rOM2Q_eeNijL6C1zwk9TNkf_G9n0b07xtK4d_lXiD_qG0gFXI0ubk_oDkbYuoMbM9qcUnYHNISIPn-_RjeQs4unawSjRZvj5KKBCYzPpT9LrFPYQy7F-x7deRPDNnp7lnlVvRhgn9zVOV9W3z6svvaf6tuHj-t-eVsbymSupbW2pazjEgthRMs4MbzrOqkNtmCcGaTmQhJqnW4EtabBAGQYuDBMaGPpZbWedW2AnZqiP0A8qQBe_QNC3CootzF7p0jbCN0JLTjFrbAgW6AlD1YzSiUnRevtrDXF8PPoUla7cIxjWV8RiVuOJeZtmaLzVPlwStEN_19tsHq0Us1Wqkcr1dnKwnozs7xz7gmjbMA4o38BboebUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904709074</pqid></control><display><type>article</type><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><source>IEEE Open Access Journals</source><creator>D., Sandeep S. ; Mohanty, Satyajit</creator><creatorcontrib>D., Sandeep S. ; Mohanty, Satyajit</creatorcontrib><description>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3340856</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural network ; Artificial neural networks ; artificial rabbits optimization ; Batteries ; Costs ; Data buses ; DC machines ; DC microgrid ; Distributed generation ; Electric potential ; Energy management ; energy management system ; Energy management systems ; Energy storage ; Incremental conductance ; Maximum power tracking ; Microgrids ; Modulators ; Neural networks ; Optimization methods ; Power management ; PV system ; Rabbits ; Regulators ; storage system ; Supercapacitors ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2023, Vol.11, p.142411-142432</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</cites><orcidid>0000-0003-2109-5697 ; 0000-0001-7245-5555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10348575$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>D., Sandeep S.</creatorcontrib><creatorcontrib>Mohanty, Satyajit</creatorcontrib><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>artificial rabbits optimization</subject><subject>Batteries</subject><subject>Costs</subject><subject>Data buses</subject><subject>DC machines</subject><subject>DC microgrid</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Energy management</subject><subject>energy management system</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Incremental conductance</subject><subject>Maximum power tracking</subject><subject>Microgrids</subject><subject>Modulators</subject><subject>Neural networks</subject><subject>Optimization methods</subject><subject>Power management</subject><subject>PV system</subject><subject>Rabbits</subject><subject>Regulators</subject><subject>storage system</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUduO0zAQjRBIrJb9AniwxOumOHYc24_dUKDSXhAFXq3xJZVLGwfbFSp_wR_jJRXaeZnRmTnH4zlV9brBi6bB8t2y71ebzYJgQheUtliw7ll1QZpO1pTR7vmT-mV1ldIOlxAFYvyi-rOM2Q_eeNijL6C1zwk9TNkf_G9n0b07xtK4d_lXiD_qG0gFXI0ubk_oDkbYuoMbM9qcUnYHNISIPn-_RjeQs4unawSjRZvj5KKBCYzPpT9LrFPYQy7F-x7deRPDNnp7lnlVvRhgn9zVOV9W3z6svvaf6tuHj-t-eVsbymSupbW2pazjEgthRMs4MbzrOqkNtmCcGaTmQhJqnW4EtabBAGQYuDBMaGPpZbWedW2AnZqiP0A8qQBe_QNC3CootzF7p0jbCN0JLTjFrbAgW6AlD1YzSiUnRevtrDXF8PPoUla7cIxjWV8RiVuOJeZtmaLzVPlwStEN_19tsHq0Us1Wqkcr1dnKwnozs7xz7gmjbMA4o38BboebUQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>D., Sandeep S.</creator><creator>Mohanty, Satyajit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2109-5697</orcidid><orcidid>https://orcid.org/0000-0001-7245-5555</orcidid></search><sort><creationdate>2023</creationdate><title>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</title><author>D., Sandeep S. ; Mohanty, Satyajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>artificial rabbits optimization</topic><topic>Batteries</topic><topic>Costs</topic><topic>Data buses</topic><topic>DC machines</topic><topic>DC microgrid</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Energy management</topic><topic>energy management system</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Incremental conductance</topic><topic>Maximum power tracking</topic><topic>Microgrids</topic><topic>Modulators</topic><topic>Neural networks</topic><topic>Optimization methods</topic><topic>Power management</topic><topic>PV system</topic><topic>Rabbits</topic><topic>Regulators</topic><topic>storage system</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D., Sandeep S.</creatorcontrib><creatorcontrib>Mohanty, Satyajit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D., Sandeep S.</au><au>Mohanty, Satyajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>142411</spage><epage>142432</epage><pages>142411-142432</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article introduces a method for managing energy in an isolated DC microgrid by utilizing a battery and a supercapacitor. The approach employs an artificial rabbits optimized neural network (ARONN) control system. The principal goal of this power management method is to meet the power demand while ensuring balanced production and consumption, along with maintaining a stable DC bus voltage. One notable advantage of this method is that its losses are accounted for during the design of power modulators, achieved through scheming the actual power accessible on the shared common bus. The isolated DC microgrid regulator combines the incremental conductance maximum power point tracking (MPPT) technique for maximizing power extraction from PV sources and ARONN control for managing the power modulator in the storage scheme. By effectively controlling the flow of power on the shared DC bus, the steadyness of the bus DC voltage is maintained with minimal error from the reference voltage. This approach also minimizes battery stress by directing low-frequency current control for the battery and higher-frequency current control for the supercapacitor. The efficiency of the suggested energy management and regulator strategies is confirmed by the outcomes obtained from the simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3340856</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2109-5697</orcidid><orcidid>https://orcid.org/0000-0001-7245-5555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.142411-142432 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2418b68b873048da94a348dfdb533972 |
source | IEEE Open Access Journals |
subjects | Artificial neural network Artificial neural networks artificial rabbits optimization Batteries Costs Data buses DC machines DC microgrid Distributed generation Electric potential Energy management energy management system Energy management systems Energy storage Incremental conductance Maximum power tracking Microgrids Modulators Neural networks Optimization methods Power management PV system Rabbits Regulators storage system Supercapacitors Voltage Voltage control |
title | Artificial Rabbits Optimized Neural Network-Based Energy Management System for PV, Battery, and Supercapacitor Based Isolated DC Microgrid System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Rabbits%20Optimized%20Neural%20Network-Based%20Energy%20Management%20System%20for%20PV,%20Battery,%20and%20Supercapacitor%20Based%20Isolated%20DC%20Microgrid%20System&rft.jtitle=IEEE%20access&rft.au=D.,%20Sandeep%20S.&rft.date=2023&rft.volume=11&rft.spage=142411&rft.epage=142432&rft.pages=142411-142432&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3340856&rft_dat=%3Cproquest_doaj_%3E2904709074%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-9ddd435679088c84572c76669bc0dacecf9b78923deb183dc10aa2ff78c58bcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904709074&rft_id=info:pmid/&rft_ieee_id=10348575&rfr_iscdi=true |