Loading…

SO(5) Landau models and nested Nambu matrix geometry

The SO(5) Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the SO(5) Landau models and the associated matrix geometries through the Landau level projection....

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. B 2020-07, Vol.956, p.115012, Article 115012
Main Author: Hasebe, Kazuki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3
cites cdi_FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3
container_end_page
container_issue
container_start_page 115012
container_title Nuclear physics. B
container_volume 956
creator Hasebe, Kazuki
description The SO(5) Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the SO(5) Landau models and the associated matrix geometries through the Landau level projection. With the SO(5) monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized SO(5) gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau level the matrix geometry becomes a nested fuzzy structure realizing a pure quantum geometry with no counterpart in classical geometry. The internal fuzzy geometry structure is discussed in the view of an SO(4) Pauli-Schrödinger model and the SO(4) Landau model, where we unveil a hidden singular gauge transformation between their background non-Abelian field configurations. Relativistic versions of the SO(5) Landau model are also investigated and relationship to the Berezin-Toeplitz quantization is clarified. We finally discuss the matrix geometry of the Landau models in even higher dimensions.
doi_str_mv 10.1016/j.nuclphysb.2020.115012
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2439890f8b7046f88e7bcaa5b1edd556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0550321320300985</els_id><doaj_id>oai_doaj_org_article_2439890f8b7046f88e7bcaa5b1edd556</doaj_id><sourcerecordid>S0550321320300985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDWQJixQ7jh1nWVU8KlV0AawtP8bFUZNUdoro3-MS1C2zGc2V7tHoIHRL8Ixgwh-aWbc3293nIepZgYuUEoZJcYYmRFQ0J4wX52iCGcM5LQi9RFcxNjgNp2KCyrf1HbvPVqqzap-1vYVtzNKRdRAHsNmranXK1RD8d7aBvoUhHK7RhVPbCDd_e4o-nh7fFy_5av28XMxXuSkpHvKKlpoTLGpXYme0qQ0XnGpqgTGNjRW11paVVjMLdWELw8FZ6tJrGgC4o1O0HLm2V43cBd-qcJC98vI36MNGqjB4swVZlLQWNXZCV7jkTgiotFGKaQLWMsYTqxpZJvQxBnAnHsHyKFI28iRSHkXKUWRqzsdmUgNfHoKMxkNnwPoAZki_-H8ZPxLBgB8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SO(5) Landau models and nested Nambu matrix geometry</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect Journals</source><creator>Hasebe, Kazuki</creator><creatorcontrib>Hasebe, Kazuki</creatorcontrib><description>The SO(5) Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the SO(5) Landau models and the associated matrix geometries through the Landau level projection. With the SO(5) monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized SO(5) gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau level the matrix geometry becomes a nested fuzzy structure realizing a pure quantum geometry with no counterpart in classical geometry. The internal fuzzy geometry structure is discussed in the view of an SO(4) Pauli-Schrödinger model and the SO(4) Landau model, where we unveil a hidden singular gauge transformation between their background non-Abelian field configurations. Relativistic versions of the SO(5) Landau model are also investigated and relationship to the Berezin-Toeplitz quantization is clarified. We finally discuss the matrix geometry of the Landau models in even higher dimensions.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2020.115012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Nuclear physics. B, 2020-07, Vol.956, p.115012, Article 115012</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3</citedby><cites>FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0550321320300985$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Hasebe, Kazuki</creatorcontrib><title>SO(5) Landau models and nested Nambu matrix geometry</title><title>Nuclear physics. B</title><description>The SO(5) Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the SO(5) Landau models and the associated matrix geometries through the Landau level projection. With the SO(5) monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized SO(5) gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau level the matrix geometry becomes a nested fuzzy structure realizing a pure quantum geometry with no counterpart in classical geometry. The internal fuzzy geometry structure is discussed in the view of an SO(4) Pauli-Schrödinger model and the SO(4) Landau model, where we unveil a hidden singular gauge transformation between their background non-Abelian field configurations. Relativistic versions of the SO(5) Landau model are also investigated and relationship to the Berezin-Toeplitz quantization is clarified. We finally discuss the matrix geometry of the Landau models in even higher dimensions.</description><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkMtOwzAQRS0EEqXwDWQJixQ7jh1nWVU8KlV0AawtP8bFUZNUdoro3-MS1C2zGc2V7tHoIHRL8Ixgwh-aWbc3293nIepZgYuUEoZJcYYmRFQ0J4wX52iCGcM5LQi9RFcxNjgNp2KCyrf1HbvPVqqzap-1vYVtzNKRdRAHsNmranXK1RD8d7aBvoUhHK7RhVPbCDd_e4o-nh7fFy_5av28XMxXuSkpHvKKlpoTLGpXYme0qQ0XnGpqgTGNjRW11paVVjMLdWELw8FZ6tJrGgC4o1O0HLm2V43cBd-qcJC98vI36MNGqjB4swVZlLQWNXZCV7jkTgiotFGKaQLWMsYTqxpZJvQxBnAnHsHyKFI28iRSHkXKUWRqzsdmUgNfHoKMxkNnwPoAZki_-H8ZPxLBgB8</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Hasebe, Kazuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202007</creationdate><title>SO(5) Landau models and nested Nambu matrix geometry</title><author>Hasebe, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasebe, Kazuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasebe, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SO(5) Landau models and nested Nambu matrix geometry</atitle><jtitle>Nuclear physics. B</jtitle><date>2020-07</date><risdate>2020</risdate><volume>956</volume><spage>115012</spage><pages>115012-</pages><artnum>115012</artnum><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>The SO(5) Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the SO(5) Landau models and the associated matrix geometries through the Landau level projection. With the SO(5) monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized SO(5) gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau level the matrix geometry becomes a nested fuzzy structure realizing a pure quantum geometry with no counterpart in classical geometry. The internal fuzzy geometry structure is discussed in the view of an SO(4) Pauli-Schrödinger model and the SO(4) Landau model, where we unveil a hidden singular gauge transformation between their background non-Abelian field configurations. Relativistic versions of the SO(5) Landau model are also investigated and relationship to the Berezin-Toeplitz quantization is clarified. We finally discuss the matrix geometry of the Landau models in even higher dimensions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2020.115012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0550-3213
ispartof Nuclear physics. B, 2020-07, Vol.956, p.115012, Article 115012
issn 0550-3213
1873-1562
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2439890f8b7046f88e7bcaa5b1edd556
source ScienceDirect Freedom Collection; ScienceDirect Journals
title SO(5) Landau models and nested Nambu matrix geometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SO(5)%20Landau%20models%20and%20nested%20Nambu%20matrix%20geometry&rft.jtitle=Nuclear%20physics.%20B&rft.au=Hasebe,%20Kazuki&rft.date=2020-07&rft.volume=956&rft.spage=115012&rft.pages=115012-&rft.artnum=115012&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2020.115012&rft_dat=%3Celsevier_doaj_%3ES0550321320300985%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-734b61089f40fcbc9c6863b3de55b0cd89bbd54db5de92d2c6efd3f000beee6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true