Loading…

Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility

Highlights The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate. The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh ho...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2022-12, Vol.14 (1), p.109-109, Article 109
Main Authors: Yang, Peng, Zha, Jiajia, Gao, Guoyun, Zheng, Long, Huang, Haoxin, Xia, Yunpeng, Xu, Songcen, Xiong, Tengfei, Zhang, Zhuomin, Yang, Zhengbao, Chen, Ye, Ki, Dong-Keun, Liou, Juin J., Liao, Wugang, Tan, Chaoliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143
cites cdi_FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143
container_end_page 109
container_issue 1
container_start_page 109
container_title Nano-micro letters
container_volume 14
creator Yang, Peng
Zha, Jiajia
Gao, Guoyun
Zheng, Long
Huang, Haoxin
Xia, Yunpeng
Xu, Songcen
Xiong, Tengfei
Zhang, Zhuomin
Yang, Zhengbao
Chen, Ye
Ki, Dong-Keun
Liou, Juin J.
Liao, Wugang
Tan, Chaoliang
description Highlights The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate. The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature. The lack of stable p -type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p -type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p -type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature, that may lay the foundation for the future high-performance p -type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .
doi_str_mv 10.1007/s40820-022-00852-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_243dc4fded73424f88415f84a6c2fe64</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_243dc4fded73424f88415f84a6c2fe64</doaj_id><sourcerecordid>2652865368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltiwMbWPL0k2SFBBW6mUzXTByrIde-IqEw920mreHk_TFsqClS2f_3zn4r-q3lLykRJSn2ROGiCYAGBCGgEYXlSHQAXBQgj6stwZpVjWRB5UxzkHQwTwGmrBX1cHTHBOgYvD6udZindTj6JHKzcMcwrzBl3pMRo3TBnFEfX4yxXyMaEtnnZbh1ZJjznkKaaM7kJJvR6mpPuw7tF5HBz6Hk0YwrR7U73yesju-OE8qq6_fV2dnuPLH2cXp58vsRV1O2EHZRpomQXS1Vy2uvVWN55I7bgBYrg3YFpDKRE1dQas9tobKhhrdVNTzo6qi4XbRX2jtilsdNqpqIO6f4hprXSagh2cAs46y33nuppx4L5pOBW-4Vpa8E7uWZ8W1nY2G9dZN5bRhmfQ55Ex9Godb1VLaNMKUgAfHgAp_ppdntQmZFsWq0cX56xACmikYLIp0vf_SG_inMayqr1KUqBtve8IFpVNMefk_FMzlKi9EdRiBFWMoO6NoKAkvft7jKeUx28vArYIcgmNa5f-1P4P9jeiKr3Z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656121974</pqid></control><display><type>article</type><title>Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Yang, Peng ; Zha, Jiajia ; Gao, Guoyun ; Zheng, Long ; Huang, Haoxin ; Xia, Yunpeng ; Xu, Songcen ; Xiong, Tengfei ; Zhang, Zhuomin ; Yang, Zhengbao ; Chen, Ye ; Ki, Dong-Keun ; Liou, Juin J. ; Liao, Wugang ; Tan, Chaoliang</creator><creatorcontrib>Yang, Peng ; Zha, Jiajia ; Gao, Guoyun ; Zheng, Long ; Huang, Haoxin ; Xia, Yunpeng ; Xu, Songcen ; Xiong, Tengfei ; Zhang, Zhuomin ; Yang, Zhengbao ; Chen, Ye ; Ki, Dong-Keun ; Liou, Juin J. ; Liao, Wugang ; Tan, Chaoliang</creatorcontrib><description>Highlights The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate. The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature. The lack of stable p -type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p -type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p -type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature, that may lay the foundation for the future high-performance p -type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-022-00852-2</identifier><identifier>PMID: 35441245</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Boron nitride ; Chemical vapor deposition ; Engineering ; Field effect transistors ; Flat surfaces ; Hole mobility ; Metal oxide semiconductors ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Room temperature ; Semiconductor devices ; Single crystals ; Substrate engineering ; Substrates ; Tellurium ; Transistors</subject><ispartof>Nano-micro letters, 2022-12, Vol.14 (1), p.109-109, Article 109</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143</citedby><cites>FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018950/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2656121974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35441245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Zha, Jiajia</creatorcontrib><creatorcontrib>Gao, Guoyun</creatorcontrib><creatorcontrib>Zheng, Long</creatorcontrib><creatorcontrib>Huang, Haoxin</creatorcontrib><creatorcontrib>Xia, Yunpeng</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Xiong, Tengfei</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Yang, Zhengbao</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Ki, Dong-Keun</creatorcontrib><creatorcontrib>Liou, Juin J.</creatorcontrib><creatorcontrib>Liao, Wugang</creatorcontrib><creatorcontrib>Tan, Chaoliang</creatorcontrib><title>Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate. The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature. The lack of stable p -type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p -type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p -type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature, that may lay the foundation for the future high-performance p -type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .</description><subject>Boron nitride</subject><subject>Chemical vapor deposition</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Flat surfaces</subject><subject>Hole mobility</subject><subject>Metal oxide semiconductors</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Substrate engineering</subject><subject>Substrates</subject><subject>Tellurium</subject><subject>Transistors</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltiwMbWPL0k2SFBBW6mUzXTByrIde-IqEw920mreHk_TFsqClS2f_3zn4r-q3lLykRJSn2ROGiCYAGBCGgEYXlSHQAXBQgj6stwZpVjWRB5UxzkHQwTwGmrBX1cHTHBOgYvD6udZindTj6JHKzcMcwrzBl3pMRo3TBnFEfX4yxXyMaEtnnZbh1ZJjznkKaaM7kJJvR6mpPuw7tF5HBz6Hk0YwrR7U73yesju-OE8qq6_fV2dnuPLH2cXp58vsRV1O2EHZRpomQXS1Vy2uvVWN55I7bgBYrg3YFpDKRE1dQas9tobKhhrdVNTzo6qi4XbRX2jtilsdNqpqIO6f4hprXSagh2cAs46y33nuppx4L5pOBW-4Vpa8E7uWZ8W1nY2G9dZN5bRhmfQ55Ex9Godb1VLaNMKUgAfHgAp_ppdntQmZFsWq0cX56xACmikYLIp0vf_SG_inMayqr1KUqBtve8IFpVNMefk_FMzlKi9EdRiBFWMoO6NoKAkvft7jKeUx28vArYIcgmNa5f-1P4P9jeiKr3Z</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yang, Peng</creator><creator>Zha, Jiajia</creator><creator>Gao, Guoyun</creator><creator>Zheng, Long</creator><creator>Huang, Haoxin</creator><creator>Xia, Yunpeng</creator><creator>Xu, Songcen</creator><creator>Xiong, Tengfei</creator><creator>Zhang, Zhuomin</creator><creator>Yang, Zhengbao</creator><creator>Chen, Ye</creator><creator>Ki, Dong-Keun</creator><creator>Liou, Juin J.</creator><creator>Liao, Wugang</creator><creator>Tan, Chaoliang</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility</title><author>Yang, Peng ; Zha, Jiajia ; Gao, Guoyun ; Zheng, Long ; Huang, Haoxin ; Xia, Yunpeng ; Xu, Songcen ; Xiong, Tengfei ; Zhang, Zhuomin ; Yang, Zhengbao ; Chen, Ye ; Ki, Dong-Keun ; Liou, Juin J. ; Liao, Wugang ; Tan, Chaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron nitride</topic><topic>Chemical vapor deposition</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Flat surfaces</topic><topic>Hole mobility</topic><topic>Metal oxide semiconductors</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Substrate engineering</topic><topic>Substrates</topic><topic>Tellurium</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Zha, Jiajia</creatorcontrib><creatorcontrib>Gao, Guoyun</creatorcontrib><creatorcontrib>Zheng, Long</creatorcontrib><creatorcontrib>Huang, Haoxin</creatorcontrib><creatorcontrib>Xia, Yunpeng</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Xiong, Tengfei</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Yang, Zhengbao</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Ki, Dong-Keun</creatorcontrib><creatorcontrib>Liou, Juin J.</creatorcontrib><creatorcontrib>Liao, Wugang</creatorcontrib><creatorcontrib>Tan, Chaoliang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Peng</au><au>Zha, Jiajia</au><au>Gao, Guoyun</au><au>Zheng, Long</au><au>Huang, Haoxin</au><au>Xia, Yunpeng</au><au>Xu, Songcen</au><au>Xiong, Tengfei</au><au>Zhang, Zhuomin</au><au>Yang, Zhengbao</au><au>Chen, Ye</au><au>Ki, Dong-Keun</au><au>Liou, Juin J.</au><au>Liao, Wugang</au><au>Tan, Chaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>109</spage><epage>109</epage><pages>109-109</pages><artnum>109</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights The growth of high-quality single-crystalline Te nanobelts is reported by introducing atomically flat hexagonal boron nitride (h-BN) nanoflakes into the chemical vapor deposition system as the growth substrate. The field-effect transistor based on Te grown on h-BN exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature. The lack of stable p -type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p -type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p -type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm 2  V −1  s −1 at room temperature, that may lay the foundation for the future high-performance p -type 2D FET and metal–oxide–semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>35441245</pmid><doi>10.1007/s40820-022-00852-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2022-12, Vol.14 (1), p.109-109, Article 109
issn 2311-6706
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_243dc4fded73424f88415f84a6c2fe64
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Boron nitride
Chemical vapor deposition
Engineering
Field effect transistors
Flat surfaces
Hole mobility
Metal oxide semiconductors
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Room temperature
Semiconductor devices
Single crystals
Substrate engineering
Substrates
Tellurium
Transistors
title Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Tellurium%20Nanobelts%20on%20h-BN%20for%20p-type%20Transistors%20with%20Ultrahigh%20Hole%20Mobility&rft.jtitle=Nano-micro%20letters&rft.au=Yang,%20Peng&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=109&rft.epage=109&rft.pages=109-109&rft.artnum=109&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-022-00852-2&rft_dat=%3Cproquest_doaj_%3E2652865368%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-e2007293c20d7469a9fca8f06ae4b20b4fb2b9b110571eb2cafafb15339a87143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656121974&rft_id=info:pmid/35441245&rfr_iscdi=true