Loading…
Pythagorean Fuzzy Einstein Hybrid Averaging Aggregation Operator and its Application to Multiple-Attribute Group Decision Making
Pythagorean fuzzy set is one of the successful extensions of the intuitionistic fuzzy set for handling uncertainties in information. Under this environment, in this paper, we introduce the notion of Pythagorean fuzzy Einstein hybrid averaging (PFEHA) aggregation operator along with some of its prope...
Saved in:
Published in: | Journal of intelligent systems 2020-01, Vol.29 (1), p.736-752 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pythagorean fuzzy set is one of the successful extensions of the intuitionistic fuzzy set for handling uncertainties in information. Under this environment, in this paper, we introduce the notion of Pythagorean fuzzy Einstein hybrid averaging (PFEHA) aggregation operator along with some of its properties, namely idempotency, boundedness, and monotonicity. PFEHA aggregation operator is the generalization of Pythagorean fuzzy Einstein weighted averaging aggregation operator and Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. The operator proposed in this paper provides more accurate and precise results as compared to the existing operators. Therefore, this method plays a vital role in real-world problems. Finally, we applied the proposed operator and method to multiple-attribute group decision making. |
---|---|
ISSN: | 0334-1860 2191-026X |
DOI: | 10.1515/jisys-2018-0071 |