Loading…

Effect of Reaction Conditions on Catalytic and Noncatalytic Lignin Solvolysis in Water Media Investigated for a 5 L Reactor

The high content of oxygen in the lignin polymer and the prevalence of phenolic functional groups make the conversion of lignin to fuels and value-added products with well-defined chemical properties challenging. The lignin-to-liquid process using a water/formic acid reaction medium has been shown t...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2019-11, Vol.4 (21), p.19265-19278
Main Authors: Ghoreishi, Solmaz, Barth, Tanja, Hermundsgård, Dag H
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high content of oxygen in the lignin polymer and the prevalence of phenolic functional groups make the conversion of lignin to fuels and value-added products with well-defined chemical properties challenging. The lignin-to-liquid process using a water/formic acid reaction medium has been shown to convert the lignin polymer to monomers with a molecular weight range of 300–600 Da. The bio-oil comprises a complex mixture of monomeric phenols, aromatics, and aliphatic hydrocarbons with a high H/C and low O/C ratio. This study investigates the effect of the stirring rate, level of loading, and catalyst at 305 and 350 °C in a 5 L pilot scale reactor. The oil yields are found to be highest for experiments conducted using the maximum stirring rate, maximum level of loading, and Ru/Al2O3 catalyst with yields of more than 69 wt % on lignin intake. Goethite as a catalyst does not show good conversion efficiency at either reaction temperatures. The carbon recovery is highest for products produced at 305 °C. Furthermore, results from solid phase extraction on a DSC-CN solid phase show that 65–92 wt % the bio-oils can be recovered as fractions separated based on polarity.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02629