Loading…

WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications

WeedCube dataset consists of hyperspectral images of three crops (canola, soybean, and sugarbeet) and four invasive weeds species (kochia, common waterhemp, redroot pigweed, and common ragweed). Plants were grown in two separate greenhouses and plant canopies were captured from a top-down camera ang...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief 2024-10, Vol.56, p.110837, Article 110837
Main Authors: Ram, Billy G., Mettler, Joseph, Howatt, Kirk, Ostlie, Michael, Sun, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c400t-771faf0703d3cbba2c21e8e6b73a413ec48f2aaf108e5ffda5ecaeb9a85c289e3
container_end_page
container_issue
container_start_page 110837
container_title Data in brief
container_volume 56
creator Ram, Billy G.
Mettler, Joseph
Howatt, Kirk
Ostlie, Michael
Sun, Xin
description WeedCube dataset consists of hyperspectral images of three crops (canola, soybean, and sugarbeet) and four invasive weeds species (kochia, common waterhemp, redroot pigweed, and common ragweed). Plants were grown in two separate greenhouses and plant canopies were captured from a top-down camera angle. A push-broom hyperspectral sensor in the visible near infrared region of 400–1000 nm was used for data collection. The dataset includes 160 calibrated images. The number of images can be further increased by selection of smaller region of interests (ROIs). Dataset is supplemented by Jupyter Notebook scripts that help in data augmentation, spectral pre-processing, ROI selection for points and images, and data visualization. The primary purpose of this dataset is to support weed classification or identification studies by enhancing existing training datasets and validating the generalization capabilities of existing models. Owing to the three-dimensional (3D) nature of hyperspectral images, this dataset can also be utilized by researchers and educators across various domains for the development and testing of deep learning algorithms, the creation of automated data processing pipelines effective for 3D data, the development of tools for 3D data visualization, the creation of innovative solutions for data compression, and addressing system memory issues associated with high-dimensional data.
doi_str_mv 10.1016/j.dib.2024.110837
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2460215996724c699525efa2f406c53a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352340924008011</els_id><doaj_id>oai_doaj_org_article_2460215996724c699525efa2f406c53a</doaj_id><sourcerecordid>3102473513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-771faf0703d3cbba2c21e8e6b73a413ec48f2aaf108e5ffda5ecaeb9a85c289e3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSNERau2H4AL8pHLbv0njmM4ILSCUqlSOYA4WhNnvOtV1g52tqXfHi8pVXvpyfb4zfP4_arqLaNLRllzsV32vltyyuslY7QV6lV1woXkC1FT_frJ_rg6z3lLKWWyLkX5pjoWmkuulD6p7C_EfrXv8AP5nuIfv4OBbO5HTHlEO6VyKqU1kh4myDiR6IhNccwEQk_uSm8mLiayA7vxAcmAkIIPawLjOHgLk48hn1VHDoaM5w_rafXz65cfq2-L65vLq9Xn64WtKZ0WSjEHjioqemG7DrjlDFtsOiWgZgJt3ToO4MpnUTrXg0QL2GlopeWtRnFaXc2-fYStGVOZPN2bCN78K8S0NpAmbwc0vG4oZ1LrRvHaNlpLLtEBdzVtrBRQvD7NXuO-22FvMRzCeGb6_Cb4jVnHW8OYaDmnsji8f3BI8fce82R2PlscBggY99kIVtApIZkoUjZLS7Q5J3SP7zBqDrDN1hTY5gDbzLBLz7unAz52_EdbBB9nAZbIbz0mk63HYLH3qaAtmfgX7P8C-Ne7lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102473513</pqid></control><display><type>article</type><title>WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Ram, Billy G. ; Mettler, Joseph ; Howatt, Kirk ; Ostlie, Michael ; Sun, Xin</creator><creatorcontrib>Ram, Billy G. ; Mettler, Joseph ; Howatt, Kirk ; Ostlie, Michael ; Sun, Xin</creatorcontrib><description>WeedCube dataset consists of hyperspectral images of three crops (canola, soybean, and sugarbeet) and four invasive weeds species (kochia, common waterhemp, redroot pigweed, and common ragweed). Plants were grown in two separate greenhouses and plant canopies were captured from a top-down camera angle. A push-broom hyperspectral sensor in the visible near infrared region of 400–1000 nm was used for data collection. The dataset includes 160 calibrated images. The number of images can be further increased by selection of smaller region of interests (ROIs). Dataset is supplemented by Jupyter Notebook scripts that help in data augmentation, spectral pre-processing, ROI selection for points and images, and data visualization. The primary purpose of this dataset is to support weed classification or identification studies by enhancing existing training datasets and validating the generalization capabilities of existing models. Owing to the three-dimensional (3D) nature of hyperspectral images, this dataset can also be utilized by researchers and educators across various domains for the development and testing of deep learning algorithms, the creation of automated data processing pipelines effective for 3D data, the development of tools for 3D data visualization, the creation of innovative solutions for data compression, and addressing system memory issues associated with high-dimensional data.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2024.110837</identifier><identifier>PMID: 39252779</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Crop ; Data ; Deep learning ; Hyperspectral imaging ; Machine learning ; Precision agriculture ; Weed</subject><ispartof>Data in brief, 2024-10, Vol.56, p.110837, Article 110837</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-771faf0703d3cbba2c21e8e6b73a413ec48f2aaf108e5ffda5ecaeb9a85c289e3</cites><orcidid>0000-0002-0658-7522 ; 0000-0001-7591-0023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382205/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352340924008011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39252779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ram, Billy G.</creatorcontrib><creatorcontrib>Mettler, Joseph</creatorcontrib><creatorcontrib>Howatt, Kirk</creatorcontrib><creatorcontrib>Ostlie, Michael</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><title>WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications</title><title>Data in brief</title><addtitle>Data Brief</addtitle><description>WeedCube dataset consists of hyperspectral images of three crops (canola, soybean, and sugarbeet) and four invasive weeds species (kochia, common waterhemp, redroot pigweed, and common ragweed). Plants were grown in two separate greenhouses and plant canopies were captured from a top-down camera angle. A push-broom hyperspectral sensor in the visible near infrared region of 400–1000 nm was used for data collection. The dataset includes 160 calibrated images. The number of images can be further increased by selection of smaller region of interests (ROIs). Dataset is supplemented by Jupyter Notebook scripts that help in data augmentation, spectral pre-processing, ROI selection for points and images, and data visualization. The primary purpose of this dataset is to support weed classification or identification studies by enhancing existing training datasets and validating the generalization capabilities of existing models. Owing to the three-dimensional (3D) nature of hyperspectral images, this dataset can also be utilized by researchers and educators across various domains for the development and testing of deep learning algorithms, the creation of automated data processing pipelines effective for 3D data, the development of tools for 3D data visualization, the creation of innovative solutions for data compression, and addressing system memory issues associated with high-dimensional data.</description><subject>Crop</subject><subject>Data</subject><subject>Deep learning</subject><subject>Hyperspectral imaging</subject><subject>Machine learning</subject><subject>Precision agriculture</subject><subject>Weed</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSNERau2H4AL8pHLbv0njmM4ILSCUqlSOYA4WhNnvOtV1g52tqXfHi8pVXvpyfb4zfP4_arqLaNLRllzsV32vltyyuslY7QV6lV1woXkC1FT_frJ_rg6z3lLKWWyLkX5pjoWmkuulD6p7C_EfrXv8AP5nuIfv4OBbO5HTHlEO6VyKqU1kh4myDiR6IhNccwEQk_uSm8mLiayA7vxAcmAkIIPawLjOHgLk48hn1VHDoaM5w_rafXz65cfq2-L65vLq9Xn64WtKZ0WSjEHjioqemG7DrjlDFtsOiWgZgJt3ToO4MpnUTrXg0QL2GlopeWtRnFaXc2-fYStGVOZPN2bCN78K8S0NpAmbwc0vG4oZ1LrRvHaNlpLLtEBdzVtrBRQvD7NXuO-22FvMRzCeGb6_Cb4jVnHW8OYaDmnsji8f3BI8fce82R2PlscBggY99kIVtApIZkoUjZLS7Q5J3SP7zBqDrDN1hTY5gDbzLBLz7unAz52_EdbBB9nAZbIbz0mk63HYLH3qaAtmfgX7P8C-Ne7lw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ram, Billy G.</creator><creator>Mettler, Joseph</creator><creator>Howatt, Kirk</creator><creator>Ostlie, Michael</creator><creator>Sun, Xin</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0658-7522</orcidid><orcidid>https://orcid.org/0000-0001-7591-0023</orcidid></search><sort><creationdate>20241001</creationdate><title>WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications</title><author>Ram, Billy G. ; Mettler, Joseph ; Howatt, Kirk ; Ostlie, Michael ; Sun, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-771faf0703d3cbba2c21e8e6b73a413ec48f2aaf108e5ffda5ecaeb9a85c289e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crop</topic><topic>Data</topic><topic>Deep learning</topic><topic>Hyperspectral imaging</topic><topic>Machine learning</topic><topic>Precision agriculture</topic><topic>Weed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ram, Billy G.</creatorcontrib><creatorcontrib>Mettler, Joseph</creatorcontrib><creatorcontrib>Howatt, Kirk</creatorcontrib><creatorcontrib>Ostlie, Michael</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ram, Billy G.</au><au>Mettler, Joseph</au><au>Howatt, Kirk</au><au>Ostlie, Michael</au><au>Sun, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications</atitle><jtitle>Data in brief</jtitle><addtitle>Data Brief</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>56</volume><spage>110837</spage><pages>110837-</pages><artnum>110837</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>WeedCube dataset consists of hyperspectral images of three crops (canola, soybean, and sugarbeet) and four invasive weeds species (kochia, common waterhemp, redroot pigweed, and common ragweed). Plants were grown in two separate greenhouses and plant canopies were captured from a top-down camera angle. A push-broom hyperspectral sensor in the visible near infrared region of 400–1000 nm was used for data collection. The dataset includes 160 calibrated images. The number of images can be further increased by selection of smaller region of interests (ROIs). Dataset is supplemented by Jupyter Notebook scripts that help in data augmentation, spectral pre-processing, ROI selection for points and images, and data visualization. The primary purpose of this dataset is to support weed classification or identification studies by enhancing existing training datasets and validating the generalization capabilities of existing models. Owing to the three-dimensional (3D) nature of hyperspectral images, this dataset can also be utilized by researchers and educators across various domains for the development and testing of deep learning algorithms, the creation of automated data processing pipelines effective for 3D data, the development of tools for 3D data visualization, the creation of innovative solutions for data compression, and addressing system memory issues associated with high-dimensional data.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>39252779</pmid><doi>10.1016/j.dib.2024.110837</doi><orcidid>https://orcid.org/0000-0002-0658-7522</orcidid><orcidid>https://orcid.org/0000-0001-7591-0023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3409
ispartof Data in brief, 2024-10, Vol.56, p.110837, Article 110837
issn 2352-3409
2352-3409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2460215996724c699525efa2f406c53a
source ScienceDirect Journals; PubMed Central
subjects Crop
Data
Deep learning
Hyperspectral imaging
Machine learning
Precision agriculture
Weed
title WeedCube: Proximal hyperspectral image dataset of crops and weeds for machine learning applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WeedCube:%20Proximal%20hyperspectral%20image%20dataset%20of%20crops%20and%20weeds%20for%20machine%20learning%20applications&rft.jtitle=Data%20in%20brief&rft.au=Ram,%20Billy%20G.&rft.date=2024-10-01&rft.volume=56&rft.spage=110837&rft.pages=110837-&rft.artnum=110837&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2024.110837&rft_dat=%3Cproquest_doaj_%3E3102473513%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-771faf0703d3cbba2c21e8e6b73a413ec48f2aaf108e5ffda5ecaeb9a85c289e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102473513&rft_id=info:pmid/39252779&rfr_iscdi=true