Loading…

Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B

Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral ro...

Full description

Saved in:
Bibliographic Details
Published in:BMC plant biology 2019-06, Vol.19 (1), p.241-241, Article 241
Main Authors: Morley, Stewart A, Peralta-Castro, Antolín, Brieba, Luis G, Miller, Justin, Ong, Kai Li, Ridge, Perry G, Oliphant, Amanda, Aldous, Stephen, Nielsen, Brent L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813
cites cdi_FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813
container_end_page 241
container_issue 1
container_start_page 241
container_title BMC plant biology
container_volume 19
creator Morley, Stewart A
Peralta-Castro, Antolín
Brieba, Luis G
Miller, Justin
Ong, Kai Li
Ridge, Perry G
Oliphant, Amanda
Aldous, Stephen
Nielsen, Brent L
description Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.
doi_str_mv 10.1186/s12870-019-1854-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24604be6f4e84f699c11a47b5a8d8be9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590732965</galeid><doaj_id>oai_doaj_org_article_24604be6f4e84f699c11a47b5a8d8be9</doaj_id><sourcerecordid>A590732965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813</originalsourceid><addsrcrecordid>eNptks-O0zAQxiMEYpeFB-CCLHGBQxY7cWL7glSWf5VWgKCcLduZtC6JHWyXsk_C6-K2y7JFyAdbM7_5Rp75iuIxweeE8PZFJBVnuMRElIQ3tKzvFKeEMlJWVSXu3nqfFA9iXGNMGKfifnFSE8KwqNhp8WsWlLadn6KNKK3UYJVTyIelcjAMENFoR2tyBtCCoWmlloBef5ihANNgox8BbW1aoTiBsX0GrUsQlEnWu4g0pC2AQ4utdd8GQFPwCaxDynV7kckPV2PGY-7zyQ9kts_sXq8eFvd6NUR4dH2fFV_fvllcvC8vP76bX8wuS9MImkpNgVPGNWtpJ5iuFTam6doWk1p3pqFEYaYNUYTXpuq4oSB6oZtOccMx46Q-K-YH3c6rtZyCHVW4kl5ZuQ_kQUgVkjUDyIq2mGpo-13PvhXCEKIo043iHdcgstbLg9a00SN0BlwKajgSPc44u5JL_0O2TUMF3Qk8uxYI_vsGYpKjjSbvIS_Db6KsqoYxwnHVZvTpP-jab4LLo8oUrWkjWM3_UkuVP2Bd73NfsxOVs0ZgVleibTJ1_h8qnw7y7r2D3ub4UcHzo4LMJPiZlmoTo5x_-XzMkgNrgo8xQH8zD4LlzsXy4GKZXSx3LpZ1rnlye5A3FX9sW_8GZuzsmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243459738</pqid></control><display><type>article</type><title>Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Morley, Stewart A ; Peralta-Castro, Antolín ; Brieba, Luis G ; Miller, Justin ; Ong, Kai Li ; Ridge, Perry G ; Oliphant, Amanda ; Aldous, Stephen ; Nielsen, Brent L</creator><creatorcontrib>Morley, Stewart A ; Peralta-Castro, Antolín ; Brieba, Luis G ; Miller, Justin ; Ong, Kai Li ; Ridge, Perry G ; Oliphant, Amanda ; Aldous, Stephen ; Nielsen, Brent L</creatorcontrib><description>Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-019-1854-3</identifier><identifier>PMID: 31170927</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Addition polymerization ; Amino acids ; Arabidopsis ; Arabidopsis thaliana ; Bacterial genetics ; Chloroplasts ; Computational biology ; Coupling ; Cyanobacteria ; Deoxyribonucleic acid ; Direct-coupling-analysis ; DNA ; DNA helicase ; DNA polymerase ; DNA polymerases ; DNA primase ; DNA repair ; DNA replication ; DNA-directed DNA polymerase ; DNA-directed RNA polymerase ; E coli ; Genes ; Genetic aspects ; Genomes ; Genomics ; Homology ; Mammals ; Mitochondria ; Mitochondrial DNA ; Mutants ; Organellar DNA replication ; Organelles ; Peptides ; Phages ; Polymerase chain reaction ; Primase ; Proteins ; Redundancy ; Replication ; Residues ; RNA ; Thermophoresis ; Yeast ; Yeast-two-hybrid ; Zinc ; Zinc finger proteins</subject><ispartof>BMC plant biology, 2019-06, Vol.19 (1), p.241-241, Article 241</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813</citedby><cites>FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813</cites><orcidid>0000-0001-6300-4816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2243459738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31170927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morley, Stewart A</creatorcontrib><creatorcontrib>Peralta-Castro, Antolín</creatorcontrib><creatorcontrib>Brieba, Luis G</creatorcontrib><creatorcontrib>Miller, Justin</creatorcontrib><creatorcontrib>Ong, Kai Li</creatorcontrib><creatorcontrib>Ridge, Perry G</creatorcontrib><creatorcontrib>Oliphant, Amanda</creatorcontrib><creatorcontrib>Aldous, Stephen</creatorcontrib><creatorcontrib>Nielsen, Brent L</creatorcontrib><title>Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.</description><subject>Addition polymerization</subject><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Bacterial genetics</subject><subject>Chloroplasts</subject><subject>Computational biology</subject><subject>Coupling</subject><subject>Cyanobacteria</subject><subject>Deoxyribonucleic acid</subject><subject>Direct-coupling-analysis</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA polymerase</subject><subject>DNA polymerases</subject><subject>DNA primase</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-directed RNA polymerase</subject><subject>E coli</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homology</subject><subject>Mammals</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mutants</subject><subject>Organellar DNA replication</subject><subject>Organelles</subject><subject>Peptides</subject><subject>Phages</subject><subject>Polymerase chain reaction</subject><subject>Primase</subject><subject>Proteins</subject><subject>Redundancy</subject><subject>Replication</subject><subject>Residues</subject><subject>RNA</subject><subject>Thermophoresis</subject><subject>Yeast</subject><subject>Yeast-two-hybrid</subject><subject>Zinc</subject><subject>Zinc finger proteins</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks-O0zAQxiMEYpeFB-CCLHGBQxY7cWL7glSWf5VWgKCcLduZtC6JHWyXsk_C6-K2y7JFyAdbM7_5Rp75iuIxweeE8PZFJBVnuMRElIQ3tKzvFKeEMlJWVSXu3nqfFA9iXGNMGKfifnFSE8KwqNhp8WsWlLadn6KNKK3UYJVTyIelcjAMENFoR2tyBtCCoWmlloBef5ihANNgox8BbW1aoTiBsX0GrUsQlEnWu4g0pC2AQ4utdd8GQFPwCaxDynV7kckPV2PGY-7zyQ9kts_sXq8eFvd6NUR4dH2fFV_fvllcvC8vP76bX8wuS9MImkpNgVPGNWtpJ5iuFTam6doWk1p3pqFEYaYNUYTXpuq4oSB6oZtOccMx46Q-K-YH3c6rtZyCHVW4kl5ZuQ_kQUgVkjUDyIq2mGpo-13PvhXCEKIo043iHdcgstbLg9a00SN0BlwKajgSPc44u5JL_0O2TUMF3Qk8uxYI_vsGYpKjjSbvIS_Db6KsqoYxwnHVZvTpP-jab4LLo8oUrWkjWM3_UkuVP2Bd73NfsxOVs0ZgVleibTJ1_h8qnw7y7r2D3ub4UcHzo4LMJPiZlmoTo5x_-XzMkgNrgo8xQH8zD4LlzsXy4GKZXSx3LpZ1rnlye5A3FX9sW_8GZuzsmA</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Morley, Stewart A</creator><creator>Peralta-Castro, Antolín</creator><creator>Brieba, Luis G</creator><creator>Miller, Justin</creator><creator>Ong, Kai Li</creator><creator>Ridge, Perry G</creator><creator>Oliphant, Amanda</creator><creator>Aldous, Stephen</creator><creator>Nielsen, Brent L</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6300-4816</orcidid></search><sort><creationdate>20190606</creationdate><title>Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B</title><author>Morley, Stewart A ; Peralta-Castro, Antolín ; Brieba, Luis G ; Miller, Justin ; Ong, Kai Li ; Ridge, Perry G ; Oliphant, Amanda ; Aldous, Stephen ; Nielsen, Brent L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Bacterial genetics</topic><topic>Chloroplasts</topic><topic>Computational biology</topic><topic>Coupling</topic><topic>Cyanobacteria</topic><topic>Deoxyribonucleic acid</topic><topic>Direct-coupling-analysis</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA polymerase</topic><topic>DNA polymerases</topic><topic>DNA primase</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-directed RNA polymerase</topic><topic>E coli</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homology</topic><topic>Mammals</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mutants</topic><topic>Organellar DNA replication</topic><topic>Organelles</topic><topic>Peptides</topic><topic>Phages</topic><topic>Polymerase chain reaction</topic><topic>Primase</topic><topic>Proteins</topic><topic>Redundancy</topic><topic>Replication</topic><topic>Residues</topic><topic>RNA</topic><topic>Thermophoresis</topic><topic>Yeast</topic><topic>Yeast-two-hybrid</topic><topic>Zinc</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, Stewart A</creatorcontrib><creatorcontrib>Peralta-Castro, Antolín</creatorcontrib><creatorcontrib>Brieba, Luis G</creatorcontrib><creatorcontrib>Miller, Justin</creatorcontrib><creatorcontrib>Ong, Kai Li</creatorcontrib><creatorcontrib>Ridge, Perry G</creatorcontrib><creatorcontrib>Oliphant, Amanda</creatorcontrib><creatorcontrib>Aldous, Stephen</creatorcontrib><creatorcontrib>Nielsen, Brent L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morley, Stewart A</au><au>Peralta-Castro, Antolín</au><au>Brieba, Luis G</au><au>Miller, Justin</au><au>Ong, Kai Li</au><au>Ridge, Perry G</au><au>Oliphant, Amanda</au><au>Aldous, Stephen</au><au>Nielsen, Brent L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>241</spage><epage>241</epage><pages>241-241</pages><artnum>241</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31170927</pmid><doi>10.1186/s12870-019-1854-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6300-4816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2019-06, Vol.19 (1), p.241-241, Article 241
issn 1471-2229
1471-2229
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_24604be6f4e84f699c11a47b5a8d8be9
source PubMed (Medline); Publicly Available Content Database
subjects Addition polymerization
Amino acids
Arabidopsis
Arabidopsis thaliana
Bacterial genetics
Chloroplasts
Computational biology
Coupling
Cyanobacteria
Deoxyribonucleic acid
Direct-coupling-analysis
DNA
DNA helicase
DNA polymerase
DNA polymerases
DNA primase
DNA repair
DNA replication
DNA-directed DNA polymerase
DNA-directed RNA polymerase
E coli
Genes
Genetic aspects
Genomes
Genomics
Homology
Mammals
Mitochondria
Mitochondrial DNA
Mutants
Organellar DNA replication
Organelles
Peptides
Phages
Polymerase chain reaction
Primase
Proteins
Redundancy
Replication
Residues
RNA
Thermophoresis
Yeast
Yeast-two-hybrid
Zinc
Zinc finger proteins
title Arabidopsis thaliana organelles mimic the T7 phage DNA replisome with specific interactions between Twinkle protein and DNA polymerases Pol1A and Pol1B
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20thaliana%20organelles%20mimic%20the%20T7%20phage%20DNA%20replisome%20with%20specific%20interactions%20between%20Twinkle%20protein%20and%20DNA%20polymerases%20Pol1A%20and%20Pol1B&rft.jtitle=BMC%20plant%20biology&rft.au=Morley,%20Stewart%20A&rft.date=2019-06-06&rft.volume=19&rft.issue=1&rft.spage=241&rft.epage=241&rft.pages=241-241&rft.artnum=241&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-019-1854-3&rft_dat=%3Cgale_doaj_%3EA590732965%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-b4e8478b764d97b3a0cc5d66013bdc541a07bc1a183c2d8c4e9f9b5da8c807813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2243459738&rft_id=info:pmid/31170927&rft_galeid=A590732965&rfr_iscdi=true