Loading…

Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments

This study addresses the challenges of human-robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach work...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (21), p.6986
Main Authors: Sravanthi, Mangali, Gunturi, Sravan Kumar, Chinnaiah, Mangali Chinna, Lam, Siew-Kei, Vani, G Divya, Basha, Mudasar, Janardhan, Narambhatla, Krishna, Dodde Hari, Dubey, Sanjay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-fbb29da93781f9f81e7d2502e4ff1d39e49f9e9cb9beeda99f8f9238e25abd613
container_end_page
container_issue 21
container_start_page 6986
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Sravanthi, Mangali
Gunturi, Sravan Kumar
Chinnaiah, Mangali Chinna
Lam, Siew-Kei
Vani, G Divya
Basha, Mudasar
Janardhan, Narambhatla
Krishna, Dodde Hari
Dubey, Sanjay
description This study addresses the challenges of human-robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation of human location and the robot's intention to serve based on the human's location at static and adaptive positions. This paper presents three methodologies to address these challenges: binary classification to analyze static and adaptive postures for human localization in indoor environments using the sensor fusion method, adaptive Simultaneous Localization and Mapping (SLAM) for the robot to deliver the task, and human-robot implicit communication. VLSI hardware schemes are developed for the proposed method. Initially, the control unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze the human posture. Subsequently, static and adaptive human posture data are communicated to the robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based triangulation navigation method. The experimental validation was conducted in a hospital environment. The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO 2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation.
doi_str_mv 10.3390/s24216986
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_247eb7eecb644e839f24a421188b6dd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815421817</galeid><doaj_id>oai_doaj_org_article_247eb7eecb644e839f24a421188b6dd3</doaj_id><sourcerecordid>A815421817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fbb29da93781f9f81e7d2502e4ff1d39e49f9e9cb9beeda99f8f9238e25abd613</originalsourceid><addsrcrecordid>eNpdkktv1DAQxyNERUvhwBdAkbjAISV-bGKfUKj6WKkSiMfZ8mO8eLWxFztZiW_PLFtWbeWD7Znf_D0znqp6Q9oLxmT7sVBOSSdF96w6I5zyRlDaPn9wPq1elrJuW8oYEy-qUyYXpBeCn1XfB6e3U9hBff31Zmg-6wKuHqyFDWQ9pVxqn3J9O486Nt-SSVO9jBO67BRSrEPEq0tIXMVdyCmOEKfyqjrxelPg9f1-Xv28vvpxedvcfblZXg53jWVSTo03hkqnJesF8dILAr2ji5YC9544JoFLL0FaIw0Acoh4SZkAutDGdYSdV8uDrkt6rbY5jDr_UUkH9c-Q8krpPAW7AUV5D6YHsKbjHASTnnKNTSNCmM45hlqfDlrb2YzgLNaR9eaR6GNPDL_UKu0UIQsu-k6gwvt7hZx-z1AmNYaCfdzoCGkuihEqeoaftE_83RN0neYcsVd7qqM9ivZIXRyolcYKQvQJH7a4HIzBpgg-oH0QmAAlguwDPhwCbE6lZPDH9Emr9oOijoOC7NuH9R7J_5PB_gL1hrgV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126271157</pqid></control><display><type>article</type><title>Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments</title><source>Publicly Available Content Database</source><source>PubMed</source><creator>Sravanthi, Mangali ; Gunturi, Sravan Kumar ; Chinnaiah, Mangali Chinna ; Lam, Siew-Kei ; Vani, G Divya ; Basha, Mudasar ; Janardhan, Narambhatla ; Krishna, Dodde Hari ; Dubey, Sanjay</creator><creatorcontrib>Sravanthi, Mangali ; Gunturi, Sravan Kumar ; Chinnaiah, Mangali Chinna ; Lam, Siew-Kei ; Vani, G Divya ; Basha, Mudasar ; Janardhan, Narambhatla ; Krishna, Dodde Hari ; Dubey, Sanjay</creatorcontrib><description>This study addresses the challenges of human-robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation of human location and the robot's intention to serve based on the human's location at static and adaptive positions. This paper presents three methodologies to address these challenges: binary classification to analyze static and adaptive postures for human localization in indoor environments using the sensor fusion method, adaptive Simultaneous Localization and Mapping (SLAM) for the robot to deliver the task, and human-robot implicit communication. VLSI hardware schemes are developed for the proposed method. Initially, the control unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze the human posture. Subsequently, static and adaptive human posture data are communicated to the robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based triangulation navigation method. The experimental validation was conducted in a hospital environment. The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO 2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24216986</identifier><identifier>PMID: 39517884</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Automation ; Consumption ; Data collection ; Digital integrated circuits ; Efficiency ; Field programmable gate arrays ; FPGA ; Humans ; Internet of Things ; Localization ; Medicine ; Optimization techniques ; Posture - physiology ; posture recognition ; Robotics ; Robotics - methods ; Robotics industry ; Robots ; sensor fusion ; Sensors ; service robot ; Sleep</subject><ispartof>Sensors (Basel, Switzerland), 2024-10, Vol.24 (21), p.6986</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-fbb29da93781f9f81e7d2502e4ff1d39e49f9e9cb9beeda99f8f9238e25abd613</cites><orcidid>0000-0003-3845-7738 ; 0000-0002-1489-7686 ; 0000-0002-3801-2889 ; 0000-0001-8591-7923 ; 0000-0002-4273-2045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126271157/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126271157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sravanthi, Mangali</creatorcontrib><creatorcontrib>Gunturi, Sravan Kumar</creatorcontrib><creatorcontrib>Chinnaiah, Mangali Chinna</creatorcontrib><creatorcontrib>Lam, Siew-Kei</creatorcontrib><creatorcontrib>Vani, G Divya</creatorcontrib><creatorcontrib>Basha, Mudasar</creatorcontrib><creatorcontrib>Janardhan, Narambhatla</creatorcontrib><creatorcontrib>Krishna, Dodde Hari</creatorcontrib><creatorcontrib>Dubey, Sanjay</creatorcontrib><title>Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This study addresses the challenges of human-robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation of human location and the robot's intention to serve based on the human's location at static and adaptive positions. This paper presents three methodologies to address these challenges: binary classification to analyze static and adaptive postures for human localization in indoor environments using the sensor fusion method, adaptive Simultaneous Localization and Mapping (SLAM) for the robot to deliver the task, and human-robot implicit communication. VLSI hardware schemes are developed for the proposed method. Initially, the control unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze the human posture. Subsequently, static and adaptive human posture data are communicated to the robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based triangulation navigation method. The experimental validation was conducted in a hospital environment. The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO 2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Consumption</subject><subject>Data collection</subject><subject>Digital integrated circuits</subject><subject>Efficiency</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Humans</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Medicine</subject><subject>Optimization techniques</subject><subject>Posture - physiology</subject><subject>posture recognition</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Robotics industry</subject><subject>Robots</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>service robot</subject><subject>Sleep</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAQxyNERUvhwBdAkbjAISV-bGKfUKj6WKkSiMfZ8mO8eLWxFztZiW_PLFtWbeWD7Znf_D0znqp6Q9oLxmT7sVBOSSdF96w6I5zyRlDaPn9wPq1elrJuW8oYEy-qUyYXpBeCn1XfB6e3U9hBff31Zmg-6wKuHqyFDWQ9pVxqn3J9O486Nt-SSVO9jBO67BRSrEPEq0tIXMVdyCmOEKfyqjrxelPg9f1-Xv28vvpxedvcfblZXg53jWVSTo03hkqnJesF8dILAr2ji5YC9544JoFLL0FaIw0Acoh4SZkAutDGdYSdV8uDrkt6rbY5jDr_UUkH9c-Q8krpPAW7AUV5D6YHsKbjHASTnnKNTSNCmM45hlqfDlrb2YzgLNaR9eaR6GNPDL_UKu0UIQsu-k6gwvt7hZx-z1AmNYaCfdzoCGkuihEqeoaftE_83RN0neYcsVd7qqM9ivZIXRyolcYKQvQJH7a4HIzBpgg-oH0QmAAlguwDPhwCbE6lZPDH9Emr9oOijoOC7NuH9R7J_5PB_gL1hrgV</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Sravanthi, Mangali</creator><creator>Gunturi, Sravan Kumar</creator><creator>Chinnaiah, Mangali Chinna</creator><creator>Lam, Siew-Kei</creator><creator>Vani, G Divya</creator><creator>Basha, Mudasar</creator><creator>Janardhan, Narambhatla</creator><creator>Krishna, Dodde Hari</creator><creator>Dubey, Sanjay</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3845-7738</orcidid><orcidid>https://orcid.org/0000-0002-1489-7686</orcidid><orcidid>https://orcid.org/0000-0002-3801-2889</orcidid><orcidid>https://orcid.org/0000-0001-8591-7923</orcidid><orcidid>https://orcid.org/0000-0002-4273-2045</orcidid></search><sort><creationdate>20241030</creationdate><title>Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments</title><author>Sravanthi, Mangali ; Gunturi, Sravan Kumar ; Chinnaiah, Mangali Chinna ; Lam, Siew-Kei ; Vani, G Divya ; Basha, Mudasar ; Janardhan, Narambhatla ; Krishna, Dodde Hari ; Dubey, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fbb29da93781f9f81e7d2502e4ff1d39e49f9e9cb9beeda99f8f9238e25abd613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Consumption</topic><topic>Data collection</topic><topic>Digital integrated circuits</topic><topic>Efficiency</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Humans</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Medicine</topic><topic>Optimization techniques</topic><topic>Posture - physiology</topic><topic>posture recognition</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Robotics industry</topic><topic>Robots</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>service robot</topic><topic>Sleep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sravanthi, Mangali</creatorcontrib><creatorcontrib>Gunturi, Sravan Kumar</creatorcontrib><creatorcontrib>Chinnaiah, Mangali Chinna</creatorcontrib><creatorcontrib>Lam, Siew-Kei</creatorcontrib><creatorcontrib>Vani, G Divya</creatorcontrib><creatorcontrib>Basha, Mudasar</creatorcontrib><creatorcontrib>Janardhan, Narambhatla</creatorcontrib><creatorcontrib>Krishna, Dodde Hari</creatorcontrib><creatorcontrib>Dubey, Sanjay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sravanthi, Mangali</au><au>Gunturi, Sravan Kumar</au><au>Chinnaiah, Mangali Chinna</au><au>Lam, Siew-Kei</au><au>Vani, G Divya</au><au>Basha, Mudasar</au><au>Janardhan, Narambhatla</au><au>Krishna, Dodde Hari</au><au>Dubey, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-10-30</date><risdate>2024</risdate><volume>24</volume><issue>21</issue><spage>6986</spage><pages>6986-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This study addresses the challenges of human-robot interactions in real-time environments with adaptive field-programmable gate array (FPGA)-based accelerators. Predicting human posture in indoor environments in confined areas is a significant challenge for service robots. The proposed approach works on two levels: the estimation of human location and the robot's intention to serve based on the human's location at static and adaptive positions. This paper presents three methodologies to address these challenges: binary classification to analyze static and adaptive postures for human localization in indoor environments using the sensor fusion method, adaptive Simultaneous Localization and Mapping (SLAM) for the robot to deliver the task, and human-robot implicit communication. VLSI hardware schemes are developed for the proposed method. Initially, the control unit processes real-time sensor data through PIR sensors and multiple ultrasonic sensors to analyze the human posture. Subsequently, static and adaptive human posture data are communicated to the robot via Wi-Fi. Finally, the robot performs services for humans using an adaptive SLAM-based triangulation navigation method. The experimental validation was conducted in a hospital environment. The proposed algorithms were coded in Verilog HDL, simulated, and synthesized using VIVADO 2017.3. A Zed-board-based FPGA Xilinx board was used for experimental validation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517884</pmid><doi>10.3390/s24216986</doi><orcidid>https://orcid.org/0000-0003-3845-7738</orcidid><orcidid>https://orcid.org/0000-0002-1489-7686</orcidid><orcidid>https://orcid.org/0000-0002-3801-2889</orcidid><orcidid>https://orcid.org/0000-0001-8591-7923</orcidid><orcidid>https://orcid.org/0000-0002-4273-2045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-10, Vol.24 (21), p.6986
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_247eb7eecb644e839f24a421188b6dd3
source Publicly Available Content Database; PubMed
subjects Algorithms
Automation
Consumption
Data collection
Digital integrated circuits
Efficiency
Field programmable gate arrays
FPGA
Humans
Internet of Things
Localization
Medicine
Optimization techniques
Posture - physiology
posture recognition
Robotics
Robotics - methods
Robotics industry
Robots
sensor fusion
Sensors
service robot
Sleep
title Adaptive FPGA-Based Accelerators for Human-Robot Interaction in Indoor Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20FPGA-Based%20Accelerators%20for%20Human-Robot%20Interaction%20in%20Indoor%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sravanthi,%20Mangali&rft.date=2024-10-30&rft.volume=24&rft.issue=21&rft.spage=6986&rft.pages=6986-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24216986&rft_dat=%3Cgale_doaj_%3EA815421817%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-fbb29da93781f9f81e7d2502e4ff1d39e49f9e9cb9beeda99f8f9238e25abd613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126271157&rft_id=info:pmid/39517884&rft_galeid=A815421817&rfr_iscdi=true