Loading…

Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors

Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy. Nucleic acids 2016, Vol.5 (5), p.e320, Article e320
Main Authors: Koblas, Tomas, Leontovyc, Ivan, Loukotova, Sarka, Kosinova, Lucie, Saudek, Frantisek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053
cites cdi_FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053
container_end_page
container_issue 5
container_start_page e320
container_title Molecular therapy. Nucleic acids
container_volume 5
creator Koblas, Tomas
Leontovyc, Ivan
Loukotova, Sarka
Kosinova, Lucie
Saudek, Frantisek
description Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation'Pdx1, Neurogenin3, and MafA'efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.
doi_str_mv 10.1038/mtna.2016.33
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2492d679e4c34550afc3224b28132fcf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2162253117300483</els_id><doaj_id>oai_doaj_org_article_2492d679e4c34550afc3224b28132fcf</doaj_id><sourcerecordid>4059499651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaW89F0Ot6q2_bl8KyJM2WNA1LchZafbhabGkr2SH5B_3Zkes0JFAdpEHzzqOZ0RTFRwSXCJL6Sz94ucQQ8SUhb4pjjDguMSPo7Qv7qDhNaQ_z4hBhjt8XR7hCdVVjclz82ZpDDG2Ufe98C4IF19KraOTgFDi7Dyo6b8DadF0Cqy3F38HGDyFvaeycL3OsHtUUOUtu02T326tVAjZEcK3v0QJctZ4sgPQa_JB2BW6i9CmDD4MLHpxLNYSYPhTvrOySOX06T4rb87Ob9UV5-fPbZr26LBXDbCgpYZozRhgnljaIkVorxqxhjYI7ZKDSqqIENYhkT82rhteqMdJWFMGqhoycFJuZq4Pci0N0vYwPIkgn_l6E2AoZc_GdEZg2WGeEoYpQxqC0imBMd7hGBFtlM-vrzDqMu95oZfwQZfcK-trj3S_RhjvBIKIM8Qz4_ASI4fdo0iD2YYw-1y9QVTeMYsimlBezSsWQUjT2-QUExTQGYhoDMY2BICTLP73M6ln879OzgM8Ck_t850wUSTnjldEuGjXkRrj_kx8B7ee_GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789542055</pqid></control><display><type>article</type><title>Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors</title><source>ScienceDirect Additional Titles</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Koblas, Tomas ; Leontovyc, Ivan ; Loukotova, Sarka ; Kosinova, Lucie ; Saudek, Frantisek</creator><creatorcontrib>Koblas, Tomas ; Leontovyc, Ivan ; Loukotova, Sarka ; Kosinova, Lucie ; Saudek, Frantisek</creatorcontrib><description>Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation'Pdx1, Neurogenin3, and MafA'efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1038/mtna.2016.33</identifier><identifier>PMID: 27187823</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cellular biology ; diabetes ; Insulin ; insulin-producing cells ; MafA ; modified mRNA ; Neurogenin 3 ; Original ; Pancreas ; Pdx1 ; reprogramming ; Ribonucleic acid ; RNA ; synthetic mRNA ; transdifferentiation ; Transplants &amp; implants ; β-cells</subject><ispartof>Molecular therapy. Nucleic acids, 2016, Vol.5 (5), p.e320, Article e320</ispartof><rights>2016 Official journal of the American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group May 2016</rights><rights>Copyright © 2016 Official journal of the American Society of Gene &amp; Cell Therapy 2016 Official journal of the American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053</citedby><cites>FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014516/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1789542055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,4024,25753,27923,27924,27925,37012,44590,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27187823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koblas, Tomas</creatorcontrib><creatorcontrib>Leontovyc, Ivan</creatorcontrib><creatorcontrib>Loukotova, Sarka</creatorcontrib><creatorcontrib>Kosinova, Lucie</creatorcontrib><creatorcontrib>Saudek, Frantisek</creatorcontrib><title>Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors</title><title>Molecular therapy. Nucleic acids</title><addtitle>Mol Ther Nucleic Acids</addtitle><description>Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation'Pdx1, Neurogenin3, and MafA'efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.</description><subject>Cellular biology</subject><subject>diabetes</subject><subject>Insulin</subject><subject>insulin-producing cells</subject><subject>MafA</subject><subject>modified mRNA</subject><subject>Neurogenin 3</subject><subject>Original</subject><subject>Pancreas</subject><subject>Pdx1</subject><subject>reprogramming</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>synthetic mRNA</subject><subject>transdifferentiation</subject><subject>Transplants &amp; implants</subject><subject>β-cells</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaW89F0Ot6q2_bl8KyJM2WNA1LchZafbhabGkr2SH5B_3Zkes0JFAdpEHzzqOZ0RTFRwSXCJL6Sz94ucQQ8SUhb4pjjDguMSPo7Qv7qDhNaQ_z4hBhjt8XR7hCdVVjclz82ZpDDG2Ufe98C4IF19KraOTgFDi7Dyo6b8DadF0Cqy3F38HGDyFvaeycL3OsHtUUOUtu02T326tVAjZEcK3v0QJctZ4sgPQa_JB2BW6i9CmDD4MLHpxLNYSYPhTvrOySOX06T4rb87Ob9UV5-fPbZr26LBXDbCgpYZozRhgnljaIkVorxqxhjYI7ZKDSqqIENYhkT82rhteqMdJWFMGqhoycFJuZq4Pci0N0vYwPIkgn_l6E2AoZc_GdEZg2WGeEoYpQxqC0imBMd7hGBFtlM-vrzDqMu95oZfwQZfcK-trj3S_RhjvBIKIM8Qz4_ASI4fdo0iD2YYw-1y9QVTeMYsimlBezSsWQUjT2-QUExTQGYhoDMY2BICTLP73M6ln879OzgM8Ck_t850wUSTnjldEuGjXkRrj_kx8B7ee_GQ</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Koblas, Tomas</creator><creator>Leontovyc, Ivan</creator><creator>Loukotova, Sarka</creator><creator>Kosinova, Lucie</creator><creator>Saudek, Frantisek</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2016</creationdate><title>Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors</title><author>Koblas, Tomas ; Leontovyc, Ivan ; Loukotova, Sarka ; Kosinova, Lucie ; Saudek, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cellular biology</topic><topic>diabetes</topic><topic>Insulin</topic><topic>insulin-producing cells</topic><topic>MafA</topic><topic>modified mRNA</topic><topic>Neurogenin 3</topic><topic>Original</topic><topic>Pancreas</topic><topic>Pdx1</topic><topic>reprogramming</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>synthetic mRNA</topic><topic>transdifferentiation</topic><topic>Transplants &amp; implants</topic><topic>β-cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koblas, Tomas</creatorcontrib><creatorcontrib>Leontovyc, Ivan</creatorcontrib><creatorcontrib>Loukotova, Sarka</creatorcontrib><creatorcontrib>Kosinova, Lucie</creatorcontrib><creatorcontrib>Saudek, Frantisek</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koblas, Tomas</au><au>Leontovyc, Ivan</au><au>Loukotova, Sarka</au><au>Kosinova, Lucie</au><au>Saudek, Frantisek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><addtitle>Mol Ther Nucleic Acids</addtitle><date>2016</date><risdate>2016</risdate><volume>5</volume><issue>5</issue><spage>e320</spage><pages>e320-</pages><artnum>e320</artnum><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation'Pdx1, Neurogenin3, and MafA'efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2′-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2′-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27187823</pmid><doi>10.1038/mtna.2016.33</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-2531
ispartof Molecular therapy. Nucleic acids, 2016, Vol.5 (5), p.e320, Article e320
issn 2162-2531
2162-2531
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2492d679e4c34550afc3224b28132fcf
source ScienceDirect Additional Titles; Publicly Available Content Database; PubMed Central
subjects Cellular biology
diabetes
Insulin
insulin-producing cells
MafA
modified mRNA
Neurogenin 3
Original
Pancreas
Pdx1
reprogramming
Ribonucleic acid
RNA
synthetic mRNA
transdifferentiation
Transplants & implants
β-cells
title Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20of%20Pancreatic%20Exocrine%20Cells%20AR42J%20Into%20Insulin-producing%20Cells%20Using%20mRNAs%20for%20Pdx1,%20Ngn3,%20and%20MafA%20Transcription%20Factors&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Koblas,%20Tomas&rft.date=2016&rft.volume=5&rft.issue=5&rft.spage=e320&rft.pages=e320-&rft.artnum=e320&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1038/mtna.2016.33&rft_dat=%3Cproquest_doaj_%3E4059499651%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-435d6553563f491538dc55fe59c0b1e0cdc743191338d867968c9eaf741078053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1789542055&rft_id=info:pmid/27187823&rfr_iscdi=true