Loading…
Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals
In this article, we introduce a notion of controlled orthogonal δ ‐metric‐type spaces with an example. Further, we prove a contraction theorem and a generalized fixed point theorem in controlled orthogonal δ ‐metric‐type spaces. Finally, we illustrate two applications of the obtained fixed point res...
Saved in:
Published in: | Journal of function spaces 2025-01, Vol.2025 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-391e5ac50b16927c09b762b6085e15b11192dd7970c70d822cc8cf20818dee293 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Journal of function spaces |
container_volume | 2025 |
creator | Samuel, Benitha Wises Mani, Gunaseelan Ganesh, Purushothaman Thabet, Sabri T. M. Kedim, Imed |
description | In this article, we introduce a notion of controlled orthogonal δ ‐metric‐type spaces with an example. Further, we prove a contraction theorem and a generalized fixed point theorem in controlled orthogonal δ ‐metric‐type spaces. Finally, we illustrate two applications of the obtained fixed point results on the Atangana–Baleanu fractional integrals and the Riemann–Liouville fractional integrals. These applications showcase the versatility and efficacy of the developed theoretical framework in addressing real‐world mathematical problems. |
doi_str_mv | 10.1155/jofs/5560159 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24a9fde8f3644c069c52db03cd27c78f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24a9fde8f3644c069c52db03cd27c78f</doaj_id><sourcerecordid>3164853007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-391e5ac50b16927c09b762b6085e15b11192dd7970c70d822cc8cf20818dee293</originalsourceid><addsrcrecordid>eNo9UU1OAjEYbYwmEmTnAZq4FenPdGa6JESUBIOJuG46bQdmMkyHtiSy8wgexnN4CE9iEcK3ee_7z8sD4BajB4wZG9W29CPGUoQZvwA9QnEyzGNcnjlPr8HA-xohhDHHCWM9sJ1WH0bDV1u1AS7Xxjqz8dC2cGLb4GzTxObChbVd2VY28Ocb_n5-vZjgKhXJct8Z-NZJZTyUrYbjrmsqJUNlWw-DhVMn1SGJm7M2mJWTjb8BV2UEMzhhH7xPH5eT5-F88TSbjOdDRVgShpRjw6RiqMApJ5lCvMhSUqQoZwazAkcFROuMZ0hlSOeEKJWrkqAc59oYwmkfzI53tZW16Fy1kW4vrKzEf8G6lZAuVKoxgiSSl9rkJU2TRKGUK0Z0gajS8XEWy31wd7zVObvdGR9EbXcuyvKC4jTJGUUoi1P3xynlrPfOlOevGImDR-LgkTh5RP8A9uSHGQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3164853007</pqid></control><display><type>article</type><title>Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Samuel, Benitha Wises ; Mani, Gunaseelan ; Ganesh, Purushothaman ; Thabet, Sabri T. M. ; Kedim, Imed</creator><contributor>Samuel Nicolay</contributor><creatorcontrib>Samuel, Benitha Wises ; Mani, Gunaseelan ; Ganesh, Purushothaman ; Thabet, Sabri T. M. ; Kedim, Imed ; Samuel Nicolay</creatorcontrib><description>In this article, we introduce a notion of controlled orthogonal δ ‐metric‐type spaces with an example. Further, we prove a contraction theorem and a generalized fixed point theorem in controlled orthogonal δ ‐metric‐type spaces. Finally, we illustrate two applications of the obtained fixed point results on the Atangana–Baleanu fractional integrals and the Riemann–Liouville fractional integrals. These applications showcase the versatility and efficacy of the developed theoretical framework in addressing real‐world mathematical problems.</description><identifier>ISSN: 2314-8896</identifier><identifier>EISSN: 2314-8888</identifier><identifier>DOI: 10.1155/jofs/5560159</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Fixed points (mathematics) ; Fractional calculus ; Fuzzy sets ; Laplace transforms ; Ordinary differential equations ; Theorems</subject><ispartof>Journal of function spaces, 2025-01, Vol.2025 (1)</ispartof><rights>Copyright © 2025 Benitha Wises Samuel et al. Journal of Function Spaces published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-391e5ac50b16927c09b762b6085e15b11192dd7970c70d822cc8cf20818dee293</cites><orcidid>0009-0002-3229-8967 ; 0000-0002-4568-9732 ; 0000-0002-4191-3338 ; 0000-0002-4791-9730 ; 0000-0002-8709-5588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3164853007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3164853007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><contributor>Samuel Nicolay</contributor><creatorcontrib>Samuel, Benitha Wises</creatorcontrib><creatorcontrib>Mani, Gunaseelan</creatorcontrib><creatorcontrib>Ganesh, Purushothaman</creatorcontrib><creatorcontrib>Thabet, Sabri T. M.</creatorcontrib><creatorcontrib>Kedim, Imed</creatorcontrib><title>Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals</title><title>Journal of function spaces</title><description>In this article, we introduce a notion of controlled orthogonal δ ‐metric‐type spaces with an example. Further, we prove a contraction theorem and a generalized fixed point theorem in controlled orthogonal δ ‐metric‐type spaces. Finally, we illustrate two applications of the obtained fixed point results on the Atangana–Baleanu fractional integrals and the Riemann–Liouville fractional integrals. These applications showcase the versatility and efficacy of the developed theoretical framework in addressing real‐world mathematical problems.</description><subject>Fixed points (mathematics)</subject><subject>Fractional calculus</subject><subject>Fuzzy sets</subject><subject>Laplace transforms</subject><subject>Ordinary differential equations</subject><subject>Theorems</subject><issn>2314-8896</issn><issn>2314-8888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9UU1OAjEYbYwmEmTnAZq4FenPdGa6JESUBIOJuG46bQdmMkyHtiSy8wgexnN4CE9iEcK3ee_7z8sD4BajB4wZG9W29CPGUoQZvwA9QnEyzGNcnjlPr8HA-xohhDHHCWM9sJ1WH0bDV1u1AS7Xxjqz8dC2cGLb4GzTxObChbVd2VY28Ocb_n5-vZjgKhXJct8Z-NZJZTyUrYbjrmsqJUNlWw-DhVMn1SGJm7M2mJWTjb8BV2UEMzhhH7xPH5eT5-F88TSbjOdDRVgShpRjw6RiqMApJ5lCvMhSUqQoZwazAkcFROuMZ0hlSOeEKJWrkqAc59oYwmkfzI53tZW16Fy1kW4vrKzEf8G6lZAuVKoxgiSSl9rkJU2TRKGUK0Z0gajS8XEWy31wd7zVObvdGR9EbXcuyvKC4jTJGUUoi1P3xynlrPfOlOevGImDR-LgkTh5RP8A9uSHGQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Samuel, Benitha Wises</creator><creator>Mani, Gunaseelan</creator><creator>Ganesh, Purushothaman</creator><creator>Thabet, Sabri T. M.</creator><creator>Kedim, Imed</creator><general>Hindawi Limited</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-3229-8967</orcidid><orcidid>https://orcid.org/0000-0002-4568-9732</orcidid><orcidid>https://orcid.org/0000-0002-4191-3338</orcidid><orcidid>https://orcid.org/0000-0002-4791-9730</orcidid><orcidid>https://orcid.org/0000-0002-8709-5588</orcidid></search><sort><creationdate>202501</creationdate><title>Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals</title><author>Samuel, Benitha Wises ; Mani, Gunaseelan ; Ganesh, Purushothaman ; Thabet, Sabri T. M. ; Kedim, Imed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-391e5ac50b16927c09b762b6085e15b11192dd7970c70d822cc8cf20818dee293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Fixed points (mathematics)</topic><topic>Fractional calculus</topic><topic>Fuzzy sets</topic><topic>Laplace transforms</topic><topic>Ordinary differential equations</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Benitha Wises</creatorcontrib><creatorcontrib>Mani, Gunaseelan</creatorcontrib><creatorcontrib>Ganesh, Purushothaman</creatorcontrib><creatorcontrib>Thabet, Sabri T. M.</creatorcontrib><creatorcontrib>Kedim, Imed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of function spaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Benitha Wises</au><au>Mani, Gunaseelan</au><au>Ganesh, Purushothaman</au><au>Thabet, Sabri T. M.</au><au>Kedim, Imed</au><au>Samuel Nicolay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals</atitle><jtitle>Journal of function spaces</jtitle><date>2025-01</date><risdate>2025</risdate><volume>2025</volume><issue>1</issue><issn>2314-8896</issn><eissn>2314-8888</eissn><abstract>In this article, we introduce a notion of controlled orthogonal δ ‐metric‐type spaces with an example. Further, we prove a contraction theorem and a generalized fixed point theorem in controlled orthogonal δ ‐metric‐type spaces. Finally, we illustrate two applications of the obtained fixed point results on the Atangana–Baleanu fractional integrals and the Riemann–Liouville fractional integrals. These applications showcase the versatility and efficacy of the developed theoretical framework in addressing real‐world mathematical problems.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/jofs/5560159</doi><orcidid>https://orcid.org/0009-0002-3229-8967</orcidid><orcidid>https://orcid.org/0000-0002-4568-9732</orcidid><orcidid>https://orcid.org/0000-0002-4191-3338</orcidid><orcidid>https://orcid.org/0000-0002-4791-9730</orcidid><orcidid>https://orcid.org/0000-0002-8709-5588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-8896 |
ispartof | Journal of function spaces, 2025-01, Vol.2025 (1) |
issn | 2314-8896 2314-8888 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_24a9fde8f3644c069c52db03cd27c78f |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Fixed points (mathematics) Fractional calculus Fuzzy sets Laplace transforms Ordinary differential equations Theorems |
title | Fixed Point Theorems on Controlled Orthogonal δ ‐Metric‐Type Spaces and Applications to Fractional Integrals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20Point%20Theorems%20on%20Controlled%20Orthogonal%20%CE%B4%20%E2%80%90Metric%E2%80%90Type%20Spaces%20and%20Applications%20to%20Fractional%20Integrals&rft.jtitle=Journal%20of%20function%20spaces&rft.au=Samuel,%20Benitha%20Wises&rft.date=2025-01&rft.volume=2025&rft.issue=1&rft.issn=2314-8896&rft.eissn=2314-8888&rft_id=info:doi/10.1155/jofs/5560159&rft_dat=%3Cproquest_doaj_%3E3164853007%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-391e5ac50b16927c09b762b6085e15b11192dd7970c70d822cc8cf20818dee293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3164853007&rft_id=info:pmid/&rfr_iscdi=true |