Loading…
Investigating diseases and chemicals in COVID-19 literature with text mining
Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of...
Saved in:
Published in: | International journal of information management data insights 2021-11, Vol.1 (2), p.100016-100016, Article 100016 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563 |
---|---|
cites | cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563 |
container_end_page | 100016 |
container_issue | 2 |
container_start_page | 100016 |
container_title | International journal of information management data insights |
container_volume | 1 |
creator | Karami, Amir Bookstaver, Brandon Nolan, Melissa Bozorgi, Parisa |
description | Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19. |
doi_str_mv | 10.1016/j.jjimei.2021.100016 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667096821000094</els_id><doaj_id>oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7</doaj_id><sourcerecordid>S2667096821000094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</originalsourceid><addsrcrecordid>eNp9kc9u2zAMxo2hBVZ0fYMe9ALO9MeWpcuAIdvaAAF62XYVZIlKaMR2Ialp9_ZV6qFbLz2R-Ej-CPKrqmtGV4wy-XlYDQOOgCtOOSsSLeKH6oJL2dVUS3X2X_6xukppKC1cMcYlu6i2m-kIKePOZpx2xGMCmyARO3ni9jCis4dEcCLru9-bbzXT5IAZos0PEcgj5j3J8JTJiFMZ_1Sdh9IOV3_jZfXrx_ef69t6e3ezWX_d1k4oJWvWNB3vvBBCcsmD7ltNwYMSwFrZN63wlPZN10neBS11a4PWQuieBxWUa6W4rDYL1892MPcRRxv_mNmieRHmuDM2ZnQHMLyxjiqhrG94w7teC69CEKJ1bW-l7wrry8K6f-hH8A6mHO3hDfRtZcK92c1Ho8oDqdIF0CwAF-eUIoTXWUbNySEzmMUhc3LILA792wvlUUeEaJJDmBx4jOByuQTfBzwD1LGaoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><source>ScienceDirect</source><creator>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</creator><creatorcontrib>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</creatorcontrib><description>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</description><identifier>ISSN: 2667-0968</identifier><identifier>EISSN: 2667-0968</identifier><identifier>DOI: 10.1016/j.jjimei.2021.100016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical ; COVID-19 ; Disease ; Drug ; Literature ; SARS-CoV-2 ; Symptom ; Text mining</subject><ispartof>International journal of information management data insights, 2021-11, Vol.1 (2), p.100016-100016, Article 100016</ispartof><rights>2021</rights><rights>2021 The Author(s). Published by Elsevier Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</citedby><cites>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2667096821000094$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids></links><search><creatorcontrib>Karami, Amir</creatorcontrib><creatorcontrib>Bookstaver, Brandon</creatorcontrib><creatorcontrib>Nolan, Melissa</creatorcontrib><creatorcontrib>Bozorgi, Parisa</creatorcontrib><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><title>International journal of information management data insights</title><description>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</description><subject>Chemical</subject><subject>COVID-19</subject><subject>Disease</subject><subject>Drug</subject><subject>Literature</subject><subject>SARS-CoV-2</subject><subject>Symptom</subject><subject>Text mining</subject><issn>2667-0968</issn><issn>2667-0968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9u2zAMxo2hBVZ0fYMe9ALO9MeWpcuAIdvaAAF62XYVZIlKaMR2Ialp9_ZV6qFbLz2R-Ej-CPKrqmtGV4wy-XlYDQOOgCtOOSsSLeKH6oJL2dVUS3X2X_6xukppKC1cMcYlu6i2m-kIKePOZpx2xGMCmyARO3ni9jCis4dEcCLru9-bbzXT5IAZos0PEcgj5j3J8JTJiFMZ_1Sdh9IOV3_jZfXrx_ef69t6e3ezWX_d1k4oJWvWNB3vvBBCcsmD7ltNwYMSwFrZN63wlPZN10neBS11a4PWQuieBxWUa6W4rDYL1892MPcRRxv_mNmieRHmuDM2ZnQHMLyxjiqhrG94w7teC69CEKJ1bW-l7wrry8K6f-hH8A6mHO3hDfRtZcK92c1Ho8oDqdIF0CwAF-eUIoTXWUbNySEzmMUhc3LILA792wvlUUeEaJJDmBx4jOByuQTfBzwD1LGaoA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Karami, Amir</creator><creator>Bookstaver, Brandon</creator><creator>Nolan, Melissa</creator><creator>Bozorgi, Parisa</creator><general>Elsevier Ltd</general><general>The Author(s). Published by Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211101</creationdate><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><author>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical</topic><topic>COVID-19</topic><topic>Disease</topic><topic>Drug</topic><topic>Literature</topic><topic>SARS-CoV-2</topic><topic>Symptom</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Amir</creatorcontrib><creatorcontrib>Bookstaver, Brandon</creatorcontrib><creatorcontrib>Nolan, Melissa</creatorcontrib><creatorcontrib>Bozorgi, Parisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>International journal of information management data insights</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Amir</au><au>Bookstaver, Brandon</au><au>Nolan, Melissa</au><au>Bozorgi, Parisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating diseases and chemicals in COVID-19 literature with text mining</atitle><jtitle>International journal of information management data insights</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>1</volume><issue>2</issue><spage>100016</spage><epage>100016</epage><pages>100016-100016</pages><artnum>100016</artnum><issn>2667-0968</issn><eissn>2667-0968</eissn><abstract>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jjimei.2021.100016</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2667-0968 |
ispartof | International journal of information management data insights, 2021-11, Vol.1 (2), p.100016-100016, Article 100016 |
issn | 2667-0968 2667-0968 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7 |
source | ScienceDirect |
subjects | Chemical COVID-19 Disease Drug Literature SARS-CoV-2 Symptom Text mining |
title | Investigating diseases and chemicals in COVID-19 literature with text mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20diseases%20and%20chemicals%20in%20COVID-19%20literature%20with%20text%20mining&rft.jtitle=International%20journal%20of%20information%20management%20data%20insights&rft.au=Karami,%20Amir&rft.date=2021-11-01&rft.volume=1&rft.issue=2&rft.spage=100016&rft.epage=100016&rft.pages=100016-100016&rft.artnum=100016&rft.issn=2667-0968&rft.eissn=2667-0968&rft_id=info:doi/10.1016/j.jjimei.2021.100016&rft_dat=%3Celsevier_doaj_%3ES2667096821000094%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |