Loading…

Investigating diseases and chemicals in COVID-19 literature with text mining

Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of information management data insights 2021-11, Vol.1 (2), p.100016-100016, Article 100016
Main Authors: Karami, Amir, Bookstaver, Brandon, Nolan, Melissa, Bozorgi, Parisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563
cites cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563
container_end_page 100016
container_issue 2
container_start_page 100016
container_title International journal of information management data insights
container_volume 1
creator Karami, Amir
Bookstaver, Brandon
Nolan, Melissa
Bozorgi, Parisa
description Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.
doi_str_mv 10.1016/j.jjimei.2021.100016
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667096821000094</els_id><doaj_id>oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7</doaj_id><sourcerecordid>S2667096821000094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</originalsourceid><addsrcrecordid>eNp9kc9u2zAMxo2hBVZ0fYMe9ALO9MeWpcuAIdvaAAF62XYVZIlKaMR2Ialp9_ZV6qFbLz2R-Ej-CPKrqmtGV4wy-XlYDQOOgCtOOSsSLeKH6oJL2dVUS3X2X_6xukppKC1cMcYlu6i2m-kIKePOZpx2xGMCmyARO3ni9jCis4dEcCLru9-bbzXT5IAZos0PEcgj5j3J8JTJiFMZ_1Sdh9IOV3_jZfXrx_ef69t6e3ezWX_d1k4oJWvWNB3vvBBCcsmD7ltNwYMSwFrZN63wlPZN10neBS11a4PWQuieBxWUa6W4rDYL1892MPcRRxv_mNmieRHmuDM2ZnQHMLyxjiqhrG94w7teC69CEKJ1bW-l7wrry8K6f-hH8A6mHO3hDfRtZcK92c1Ho8oDqdIF0CwAF-eUIoTXWUbNySEzmMUhc3LILA792wvlUUeEaJJDmBx4jOByuQTfBzwD1LGaoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><source>ScienceDirect</source><creator>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</creator><creatorcontrib>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</creatorcontrib><description>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</description><identifier>ISSN: 2667-0968</identifier><identifier>EISSN: 2667-0968</identifier><identifier>DOI: 10.1016/j.jjimei.2021.100016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical ; COVID-19 ; Disease ; Drug ; Literature ; SARS-CoV-2 ; Symptom ; Text mining</subject><ispartof>International journal of information management data insights, 2021-11, Vol.1 (2), p.100016-100016, Article 100016</ispartof><rights>2021</rights><rights>2021 The Author(s). Published by Elsevier Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</citedby><cites>FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2667096821000094$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3535,27903,27904,45759</link.rule.ids></links><search><creatorcontrib>Karami, Amir</creatorcontrib><creatorcontrib>Bookstaver, Brandon</creatorcontrib><creatorcontrib>Nolan, Melissa</creatorcontrib><creatorcontrib>Bozorgi, Parisa</creatorcontrib><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><title>International journal of information management data insights</title><description>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</description><subject>Chemical</subject><subject>COVID-19</subject><subject>Disease</subject><subject>Drug</subject><subject>Literature</subject><subject>SARS-CoV-2</subject><subject>Symptom</subject><subject>Text mining</subject><issn>2667-0968</issn><issn>2667-0968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9u2zAMxo2hBVZ0fYMe9ALO9MeWpcuAIdvaAAF62XYVZIlKaMR2Ialp9_ZV6qFbLz2R-Ej-CPKrqmtGV4wy-XlYDQOOgCtOOSsSLeKH6oJL2dVUS3X2X_6xukppKC1cMcYlu6i2m-kIKePOZpx2xGMCmyARO3ni9jCis4dEcCLru9-bbzXT5IAZos0PEcgj5j3J8JTJiFMZ_1Sdh9IOV3_jZfXrx_ef69t6e3ezWX_d1k4oJWvWNB3vvBBCcsmD7ltNwYMSwFrZN63wlPZN10neBS11a4PWQuieBxWUa6W4rDYL1892MPcRRxv_mNmieRHmuDM2ZnQHMLyxjiqhrG94w7teC69CEKJ1bW-l7wrry8K6f-hH8A6mHO3hDfRtZcK92c1Ho8oDqdIF0CwAF-eUIoTXWUbNySEzmMUhc3LILA792wvlUUeEaJJDmBx4jOByuQTfBzwD1LGaoA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Karami, Amir</creator><creator>Bookstaver, Brandon</creator><creator>Nolan, Melissa</creator><creator>Bozorgi, Parisa</creator><general>Elsevier Ltd</general><general>The Author(s). Published by Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211101</creationdate><title>Investigating diseases and chemicals in COVID-19 literature with text mining</title><author>Karami, Amir ; Bookstaver, Brandon ; Nolan, Melissa ; Bozorgi, Parisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical</topic><topic>COVID-19</topic><topic>Disease</topic><topic>Drug</topic><topic>Literature</topic><topic>SARS-CoV-2</topic><topic>Symptom</topic><topic>Text mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Amir</creatorcontrib><creatorcontrib>Bookstaver, Brandon</creatorcontrib><creatorcontrib>Nolan, Melissa</creatorcontrib><creatorcontrib>Bozorgi, Parisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of information management data insights</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Amir</au><au>Bookstaver, Brandon</au><au>Nolan, Melissa</au><au>Bozorgi, Parisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating diseases and chemicals in COVID-19 literature with text mining</atitle><jtitle>International journal of information management data insights</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>1</volume><issue>2</issue><spage>100016</spage><epage>100016</epage><pages>100016-100016</pages><artnum>100016</artnum><issn>2667-0968</issn><eissn>2667-0968</eissn><abstract>Given the rapidly unfolding nature of the COVID-19 pandemic, there is an urgent need to streamline the literature synthesis of the growing scientific research to elucidate targeted solutions. Traditional systematic literature review studies have restrictions, including analyzing a limited number of papers, having various biases, being time-consuming and labor-intensive, focusing on a few topics, and lack of data-driven tools. This research has collected 9298 papers representing COVID-19 research published through May 5, 2020. We used frequency analysis to find highly frequent manifestations and therapeutic chemicals, representing the importance of the two biomedical concepts. This study also applied topic modeling that provided 25 categories showing associations between the two overarching categories. This study is beneficial to researchers for obtaining a macro-level picture of literature, to educators for knowing the scope of literature, and to policymakers and funding agencies for creating scientific strategic plans regarding COVID-19.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jjimei.2021.100016</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-0968
ispartof International journal of information management data insights, 2021-11, Vol.1 (2), p.100016-100016, Article 100016
issn 2667-0968
2667-0968
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_24ac0838ad42427b93d8ff335c5ba6d7
source ScienceDirect
subjects Chemical
COVID-19
Disease
Drug
Literature
SARS-CoV-2
Symptom
Text mining
title Investigating diseases and chemicals in COVID-19 literature with text mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20diseases%20and%20chemicals%20in%20COVID-19%20literature%20with%20text%20mining&rft.jtitle=International%20journal%20of%20information%20management%20data%20insights&rft.au=Karami,%20Amir&rft.date=2021-11-01&rft.volume=1&rft.issue=2&rft.spage=100016&rft.epage=100016&rft.pages=100016-100016&rft.artnum=100016&rft.issn=2667-0968&rft.eissn=2667-0968&rft_id=info:doi/10.1016/j.jjimei.2021.100016&rft_dat=%3Celsevier_doaj_%3ES2667096821000094%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3886-144727d3336262f9b590ede83e156b453d00b477627f9695af99339b2f8f8c563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true