Loading…

In Silico Pharmacological Prediction of Substituted Aminonitriles

Aminonitriles are heterocyclic compounds commonly used as intermediates in the synthesis of various compounds, but which have versatility in physiological processes, with peculiar characteristics and high biological value that still need to be investigated with greater avidity. Given this perspectiv...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry Proceedings 2023-11, Vol.14 (1), p.29
Main Authors: Bianca Araújo Fernandes Veras, Pamela Isabel Japura Huanca, Igor de Sousa Oliveira, Rafael Trindade Maia, Helivaldo Diogenes da Silva Souza, Sávio Benvindo Ferreira
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aminonitriles are heterocyclic compounds commonly used as intermediates in the synthesis of various compounds, but which have versatility in physiological processes, with peculiar characteristics and high biological value that still need to be investigated with greater avidity. Given this perspective, the present study aimed to determine the probability of substituted aminonitriles interacting with classes of pharmacological targets in the human body. For this, eight aminonitriles (HAN-1 to HAN-8) were synthesized and used in the in silico prediction of the compounds, using the Molinspiration software, where the potentiality of the substances to act as a G protein coupled receptor (GPCR) ligand, an ion channel modulator, a kinase inhibitor, a nuclear receptor ligand, a protease inhibitor and an enzyme inhibitor was evaluated. Thus, it was observed that the molecules showed moderate bioactivity in 100% of cases as a GPCR ligand (−0.27 to −0.5), 87.5% as an enzyme inhibitor (−0.33 to −0.49), 75% as a kinase inhibitor (−0.39 to −0.5), 62.5% as an ion channel modulator (−0.3 to −0.47) and as a protease inhibitor (−0.45 to −0.49), and 37.5% as nuclear receptor ligand (−0.43 to −0.46). The computational analysis carried out in this study indicated that the HAN-4 and HAN-6 molecules were the only molecules that reached a considerable activity score for all classes of proposed pharmacological targets, thus being the most promising as possible therapeutic tools, with further advances in studies on the performance of pre-clinical and clinical tests to verify their real bioactivity still being necessary.
ISSN:2673-4583
DOI:10.3390/ecsoc-27-16178