Loading…
Effects of total sleep deprivation on performance in a manual spacecraft docking task
Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep depriva...
Saved in:
Published in: | NPJ microgravity 2024-02, Vol.10 (1), p.21-21, Article 21 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep deprivation would affect performance not only in the
Psychomotor Vigilance Task
(PVT), but also in a complex operational task, i.e. simulated manual spacecraft docking. Sixty-two healthy participants completed the manual docking simulation
6df
and the PVT once after a night of total sleep deprivation and once after eight hours of scheduled sleep in a counterbalanced order. We assessed the impact of sleep deprivation on docking as well as PVT performance and investigated if sustained attention is an essential component of operational performance after sleep loss. The results showed that docking accuracy decreased significantly after sleep deprivation in comparison to the control condition, but only at difficult task levels. PVT performance deteriorated under sleep deprivation. Participants with larger impairments in PVT response speed after sleep deprivation also showed larger impairments in docking accuracy. In conclusion, sleep deprivation led to impaired
6df
performance, which was partly explained by impairments in sustained attention. Elevated motivation levels due to the novelty and attractiveness of the task may have helped participants to compensate for the effects of sleepiness at easier task levels. Continued testing of manual docking skills could be a useful tool both to detect sleep loss-related impairments and assess astronauts’ readiness for duty during long-duration missions. |
---|---|
ISSN: | 2373-8065 2373-8065 |
DOI: | 10.1038/s41526-024-00361-z |