Loading…
The role of dust aerosols in forming the regional climate of Georgia
The scope of this work is to study some aspects of the formation of the regional climate of the Caucasus (with a specific focus on Georgia) against the background of the impact of mineral aerosols using modelling (the RegCM interactively coupled with a dust module, WRF-Chem, and HYSPLIT models) and...
Saved in:
Published in: | E3S web of conferences 2023-01, Vol.436, p.10008 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The scope of this work is to study some aspects of the formation of the regional climate of the Caucasus (with a specific focus on Georgia) against the background of the impact of mineral aerosols using modelling (the RegCM interactively coupled with a dust module, WRF-Chem, and HYSPLIT models) and satellite data (MODIS, CALIPSO). The annual mean, as well as the error in summer and winter temperatures, standard deviation and correlation coefficient compared to the CRU data were calculated for 8 sub-regions with different orographic and climate properties. The calculation results showed that dust aerosol is an active player in the climatic system of the Caucasus (Georgia). Numerical results showed that the inclusion of dust radiative forcing in the RegCM numerical model brought the simulated summer temperature closer to the observed temperature values. The mean annual temperature increased throughout Georgia in simulations that took into account the direct impact of dust. Calculations using the WRF-Chem and HYSPLIT models revealed that during the study period, aeolian dust was brought into the territory of the South Caucasus (Georgia) equally not only from Africa and the Middle East, but also from Central (Western) Asia deserts, which was not noted earlier. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202343610008 |