Loading…
Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics
Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al al...
Saved in:
Published in: | Nature communications 2024-06, Vol.15 (1), p.5122-12 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-d379t-6ac450073100652dac61e0434a7c130a3c0f274b46deaf7aa01ce9a3acf1aec83 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 5122 |
container_title | Nature communications |
container_volume | 15 |
creator | Shang, Anyu Stegman, Benjamin Choy, Kenyi Niu, Tongjun Shen, Chao Shang, Zhongxia Sheng, Xuanyu Lopez, Jack Hoppenrath, Luke Zhang, Bohua Peter Wang, Haiyan Bellon, Pascal Zhang, Xinghang |
description | Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al
92
Ti
2
Fe
2
Co
2
Ni
2
is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al
9
Co
2
type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.
Commercial high-strength Al alloys often suffer from cracking during additive manufacturing. Here, the authors present an additively manufactured, a strong and plastically deformable Al alloy with heterogeneous nanoscale intermetallics. |
doi_str_mv | 10.1038/s41467-024-48693-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24ed195a7f114680946ba52ceae09f5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24ed195a7f114680946ba52ceae09f5c</doaj_id><sourcerecordid>3068493891</sourcerecordid><originalsourceid>FETCH-LOGICAL-d379t-6ac450073100652dac61e0434a7c130a3c0f274b46deaf7aa01ce9a3acf1aec83</originalsourceid><addsrcrecordid>eNpdkk1r3DAQhk1paUKSP9BDMfTSQ91IlqyPU1lCPwKBXppTDmJWHm-0yNJWklPy76vspm1SXUbMvDwM77xN84aSj5QwdZ455UJ2pOcdV0Kzjr9ojnvCaUdlz14--R81ZzlvSX1MU8X56-aIKSX1IPrj5mY1jq64O2xnCMsEtizJhU0bpxZCu_iSIJcUw-ZDO-IU0wxrj-3Kt-B9vG9_uXLbBggxW6h9FwqmGUsdOptPm1cT-Ixnj_Wkuf7y-cfFt-7q-9fLi9VVNzKpSyfA8oEQySghYuhHsIIi4YyDtJQRYJZMveRrLkaESQIQalEDAztRQKvYSXN54I4RtmaX3Azp3kRwZt-IaWMgFWc9mp7jSPUAcqLVPkU0F2sYeouARE-DraxPB9ZuWc84WgzVAf8M-nwS3K3ZxDtDKVWk2lsJ7x8JKf5cMBczu2zRewgYl2wYEUoO1X5dpe_-k27jkkL1aq_imilNq-rt05X-7vLniFXADoK8e7gdpn8YSsxDWswhLaamxezTYjj7DS7PsOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068493891</pqid></control><display><type>article</type><title>Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shang, Anyu ; Stegman, Benjamin ; Choy, Kenyi ; Niu, Tongjun ; Shen, Chao ; Shang, Zhongxia ; Sheng, Xuanyu ; Lopez, Jack ; Hoppenrath, Luke ; Zhang, Bohua Peter ; Wang, Haiyan ; Bellon, Pascal ; Zhang, Xinghang</creator><creatorcontrib>Shang, Anyu ; Stegman, Benjamin ; Choy, Kenyi ; Niu, Tongjun ; Shen, Chao ; Shang, Zhongxia ; Sheng, Xuanyu ; Lopez, Jack ; Hoppenrath, Luke ; Zhang, Bohua Peter ; Wang, Haiyan ; Bellon, Pascal ; Zhang, Xinghang</creatorcontrib><description>Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al
92
Ti
2
Fe
2
Co
2
Ni
2
is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al
9
Co
2
type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.
Commercial high-strength Al alloys often suffer from cracking during additive manufacturing. Here, the authors present an additively manufactured, a strong and plastically deformable Al alloy with heterogeneous nanoscale intermetallics.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48693-4</identifier><identifier>PMID: 38879562</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 639/166/988 ; 639/301/1023/1026 ; 639/301/1023/303 ; Additive manufacturing ; Alloys ; Aluminum ; Aluminum base alloys ; Compression ; Compression tests ; Compressive strength ; Deformability ; Deformation analysis ; Dislocation ; Entropy ; Formability ; High strength alloys ; Humanities and Social Sciences ; Industrial applications ; Intermetallic compounds ; Lamella ; Laser beam melting ; Manufacturing ; multidisciplinary ; Science ; Science (multidisciplinary) ; Solidification ; Stacking faults ; Yield strength</subject><ispartof>Nature communications, 2024-06, Vol.15 (1), p.5122-12</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d379t-6ac450073100652dac61e0434a7c130a3c0f274b46deaf7aa01ce9a3acf1aec83</cites><orcidid>0000-0002-7580-608X ; 0000-0002-7397-1209 ; 0000-0002-2243-2272 ; 0000-0002-8380-8667 ; 0000-0002-7293-8431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3068493891/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3068493891?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38879562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Anyu</creatorcontrib><creatorcontrib>Stegman, Benjamin</creatorcontrib><creatorcontrib>Choy, Kenyi</creatorcontrib><creatorcontrib>Niu, Tongjun</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Shang, Zhongxia</creatorcontrib><creatorcontrib>Sheng, Xuanyu</creatorcontrib><creatorcontrib>Lopez, Jack</creatorcontrib><creatorcontrib>Hoppenrath, Luke</creatorcontrib><creatorcontrib>Zhang, Bohua Peter</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Bellon, Pascal</creatorcontrib><creatorcontrib>Zhang, Xinghang</creatorcontrib><title>Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al
92
Ti
2
Fe
2
Co
2
Ni
2
is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al
9
Co
2
type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.
Commercial high-strength Al alloys often suffer from cracking during additive manufacturing. Here, the authors present an additively manufactured, a strong and plastically deformable Al alloy with heterogeneous nanoscale intermetallics.</description><subject>147/143</subject><subject>639/166/988</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Deformability</subject><subject>Deformation analysis</subject><subject>Dislocation</subject><subject>Entropy</subject><subject>Formability</subject><subject>High strength alloys</subject><subject>Humanities and Social Sciences</subject><subject>Industrial applications</subject><subject>Intermetallic compounds</subject><subject>Lamella</subject><subject>Laser beam melting</subject><subject>Manufacturing</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solidification</subject><subject>Stacking faults</subject><subject>Yield strength</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1r3DAQhk1paUKSP9BDMfTSQ91IlqyPU1lCPwKBXppTDmJWHm-0yNJWklPy76vspm1SXUbMvDwM77xN84aSj5QwdZ455UJ2pOcdV0Kzjr9ojnvCaUdlz14--R81ZzlvSX1MU8X56-aIKSX1IPrj5mY1jq64O2xnCMsEtizJhU0bpxZCu_iSIJcUw-ZDO-IU0wxrj-3Kt-B9vG9_uXLbBggxW6h9FwqmGUsdOptPm1cT-Ixnj_Wkuf7y-cfFt-7q-9fLi9VVNzKpSyfA8oEQySghYuhHsIIi4YyDtJQRYJZMveRrLkaESQIQalEDAztRQKvYSXN54I4RtmaX3Azp3kRwZt-IaWMgFWc9mp7jSPUAcqLVPkU0F2sYeouARE-DraxPB9ZuWc84WgzVAf8M-nwS3K3ZxDtDKVWk2lsJ7x8JKf5cMBczu2zRewgYl2wYEUoO1X5dpe_-k27jkkL1aq_imilNq-rt05X-7vLniFXADoK8e7gdpn8YSsxDWswhLaamxezTYjj7DS7PsOQ</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Shang, Anyu</creator><creator>Stegman, Benjamin</creator><creator>Choy, Kenyi</creator><creator>Niu, Tongjun</creator><creator>Shen, Chao</creator><creator>Shang, Zhongxia</creator><creator>Sheng, Xuanyu</creator><creator>Lopez, Jack</creator><creator>Hoppenrath, Luke</creator><creator>Zhang, Bohua Peter</creator><creator>Wang, Haiyan</creator><creator>Bellon, Pascal</creator><creator>Zhang, Xinghang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7580-608X</orcidid><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-2243-2272</orcidid><orcidid>https://orcid.org/0000-0002-8380-8667</orcidid><orcidid>https://orcid.org/0000-0002-7293-8431</orcidid></search><sort><creationdate>20240615</creationdate><title>Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics</title><author>Shang, Anyu ; Stegman, Benjamin ; Choy, Kenyi ; Niu, Tongjun ; Shen, Chao ; Shang, Zhongxia ; Sheng, Xuanyu ; Lopez, Jack ; Hoppenrath, Luke ; Zhang, Bohua Peter ; Wang, Haiyan ; Bellon, Pascal ; Zhang, Xinghang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d379t-6ac450073100652dac61e0434a7c130a3c0f274b46deaf7aa01ce9a3acf1aec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>147/143</topic><topic>639/166/988</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Deformability</topic><topic>Deformation analysis</topic><topic>Dislocation</topic><topic>Entropy</topic><topic>Formability</topic><topic>High strength alloys</topic><topic>Humanities and Social Sciences</topic><topic>Industrial applications</topic><topic>Intermetallic compounds</topic><topic>Lamella</topic><topic>Laser beam melting</topic><topic>Manufacturing</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solidification</topic><topic>Stacking faults</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Anyu</creatorcontrib><creatorcontrib>Stegman, Benjamin</creatorcontrib><creatorcontrib>Choy, Kenyi</creatorcontrib><creatorcontrib>Niu, Tongjun</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Shang, Zhongxia</creatorcontrib><creatorcontrib>Sheng, Xuanyu</creatorcontrib><creatorcontrib>Lopez, Jack</creatorcontrib><creatorcontrib>Hoppenrath, Luke</creatorcontrib><creatorcontrib>Zhang, Bohua Peter</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Bellon, Pascal</creatorcontrib><creatorcontrib>Zhang, Xinghang</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Anyu</au><au>Stegman, Benjamin</au><au>Choy, Kenyi</au><au>Niu, Tongjun</au><au>Shen, Chao</au><au>Shang, Zhongxia</au><au>Sheng, Xuanyu</au><au>Lopez, Jack</au><au>Hoppenrath, Luke</au><au>Zhang, Bohua Peter</au><au>Wang, Haiyan</au><au>Bellon, Pascal</au><au>Zhang, Xinghang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-06-15</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>5122</spage><epage>12</epage><pages>5122-12</pages><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al
92
Ti
2
Fe
2
Co
2
Ni
2
is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al
9
Co
2
type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.
Commercial high-strength Al alloys often suffer from cracking during additive manufacturing. Here, the authors present an additively manufactured, a strong and plastically deformable Al alloy with heterogeneous nanoscale intermetallics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38879562</pmid><doi>10.1038/s41467-024-48693-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7580-608X</orcidid><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-2243-2272</orcidid><orcidid>https://orcid.org/0000-0002-8380-8667</orcidid><orcidid>https://orcid.org/0000-0002-7293-8431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-06, Vol.15 (1), p.5122-12 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_24ed195a7f114680946ba52ceae09f5c |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/143 639/166/988 639/301/1023/1026 639/301/1023/303 Additive manufacturing Alloys Aluminum Aluminum base alloys Compression Compression tests Compressive strength Deformability Deformation analysis Dislocation Entropy Formability High strength alloys Humanities and Social Sciences Industrial applications Intermetallic compounds Lamella Laser beam melting Manufacturing multidisciplinary Science Science (multidisciplinary) Solidification Stacking faults Yield strength |
title | Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20an%20ultrastrong,%20deformable%20Al%20alloy%20with%20nanoscale%20intermetallics&rft.jtitle=Nature%20communications&rft.au=Shang,%20Anyu&rft.date=2024-06-15&rft.volume=15&rft.issue=1&rft.spage=5122&rft.epage=12&rft.pages=5122-12&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48693-4&rft_dat=%3Cproquest_doaj_%3E3068493891%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d379t-6ac450073100652dac61e0434a7c130a3c0f274b46deaf7aa01ce9a3acf1aec83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068493891&rft_id=info:pmid/38879562&rfr_iscdi=true |