Loading…

Digital Twin for Monitoring Ergonomics during Manufacturing Production

Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making proce...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-11, Vol.10 (21), p.7758
Main Authors: Greco, Alessandro, Caterino, Mario, Fera, Marcello, Gerbino, Salvatore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793
cites cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793
container_end_page
container_issue 21
container_start_page 7758
container_title Applied sciences
container_volume 10
creator Greco, Alessandro
Caterino, Mario
Fera, Marcello
Gerbino, Salvatore
description Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.
doi_str_mv 10.3390/app10217758
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d</doaj_id><sourcerecordid>2534071924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBUnvyDwQ8SnS_d3OU2tZCix7qednsR9jSZuMmQfz3po1I5zIzj8d7Mw-AewSfCCngs24aBDESgskrMMFQ8JxQJK4v5lswa9s9HKpARCI4AcvXUIVOH7Ldd6gzH1O2jXXoYgp1lS1SFet4DKbNbH9GtrruvTbduH2kaHvThVjfgRuvD62b_fUp-FwudvO3fPO-Ws9fNrkhnHa5YEh4IwuOfWmNI5ITRyhFGpWkdLLQ1FODGONaOnx6BRpmkaSUM0aoKMgUrEddG_VeNSkcdfpRUQd1BmKqlE5dMAenMPWSS8OZ5pSSkmpnDbaecA996bgdtB5GrSbFr961ndrHPtXD-QoPblCgAtOB9TiyTIptm5z_d0VQnXJXF7mTXw2udGk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534071924</pqid></control><display><type>article</type><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</creator><creatorcontrib>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</creatorcontrib><description>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10217758</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Biomechanics ; Case studies ; Collaboration ; Decision making ; Digital Twin ; Digital twins ; Ergonomics ; Factories ; Manufacturing ; Monitoring ; Production lines ; production process ; Risk assessment ; Robots ; Sensors ; Simulation ; Work stations ; Working conditions</subject><ispartof>Applied sciences, 2020-11, Vol.10 (21), p.7758</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</citedby><cites>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</cites><orcidid>0000-0002-3418-355X ; 0000-0003-2288-3994 ; 0000-0002-5856-5704 ; 0000-0003-1854-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534071924/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534071924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Caterino, Mario</creatorcontrib><creatorcontrib>Fera, Marcello</creatorcontrib><creatorcontrib>Gerbino, Salvatore</creatorcontrib><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><title>Applied sciences</title><description>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</description><subject>Algorithms</subject><subject>Biomechanics</subject><subject>Case studies</subject><subject>Collaboration</subject><subject>Decision making</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>Ergonomics</subject><subject>Factories</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Production lines</subject><subject>production process</subject><subject>Risk assessment</subject><subject>Robots</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Work stations</subject><subject>Working conditions</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQXUTBUnvyDwQ8SnS_d3OU2tZCix7qednsR9jSZuMmQfz3po1I5zIzj8d7Mw-AewSfCCngs24aBDESgskrMMFQ8JxQJK4v5lswa9s9HKpARCI4AcvXUIVOH7Ldd6gzH1O2jXXoYgp1lS1SFet4DKbNbH9GtrruvTbduH2kaHvThVjfgRuvD62b_fUp-FwudvO3fPO-Ws9fNrkhnHa5YEh4IwuOfWmNI5ITRyhFGpWkdLLQ1FODGONaOnx6BRpmkaSUM0aoKMgUrEddG_VeNSkcdfpRUQd1BmKqlE5dMAenMPWSS8OZ5pSSkmpnDbaecA996bgdtB5GrSbFr961ndrHPtXD-QoPblCgAtOB9TiyTIptm5z_d0VQnXJXF7mTXw2udGk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Greco, Alessandro</creator><creator>Caterino, Mario</creator><creator>Fera, Marcello</creator><creator>Gerbino, Salvatore</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3418-355X</orcidid><orcidid>https://orcid.org/0000-0003-2288-3994</orcidid><orcidid>https://orcid.org/0000-0002-5856-5704</orcidid><orcidid>https://orcid.org/0000-0003-1854-9248</orcidid></search><sort><creationdate>20201101</creationdate><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><author>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomechanics</topic><topic>Case studies</topic><topic>Collaboration</topic><topic>Decision making</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>Ergonomics</topic><topic>Factories</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Production lines</topic><topic>production process</topic><topic>Risk assessment</topic><topic>Robots</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Work stations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Caterino, Mario</creatorcontrib><creatorcontrib>Fera, Marcello</creatorcontrib><creatorcontrib>Gerbino, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, Alessandro</au><au>Caterino, Mario</au><au>Fera, Marcello</au><au>Gerbino, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin for Monitoring Ergonomics during Manufacturing Production</atitle><jtitle>Applied sciences</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>21</issue><spage>7758</spage><pages>7758-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10217758</doi><orcidid>https://orcid.org/0000-0002-3418-355X</orcidid><orcidid>https://orcid.org/0000-0003-2288-3994</orcidid><orcidid>https://orcid.org/0000-0002-5856-5704</orcidid><orcidid>https://orcid.org/0000-0003-1854-9248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-11, Vol.10 (21), p.7758
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Biomechanics
Case studies
Collaboration
Decision making
Digital Twin
Digital twins
Ergonomics
Factories
Manufacturing
Monitoring
Production lines
production process
Risk assessment
Robots
Sensors
Simulation
Work stations
Working conditions
title Digital Twin for Monitoring Ergonomics during Manufacturing Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin%20for%20Monitoring%20Ergonomics%20during%20Manufacturing%20Production&rft.jtitle=Applied%20sciences&rft.au=Greco,%20Alessandro&rft.date=2020-11-01&rft.volume=10&rft.issue=21&rft.spage=7758&rft.pages=7758-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10217758&rft_dat=%3Cproquest_doaj_%3E2534071924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534071924&rft_id=info:pmid/&rfr_iscdi=true