Loading…
Digital Twin for Monitoring Ergonomics during Manufacturing Production
Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making proce...
Saved in:
Published in: | Applied sciences 2020-11, Vol.10 (21), p.7758 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793 |
container_end_page | |
container_issue | 21 |
container_start_page | 7758 |
container_title | Applied sciences |
container_volume | 10 |
creator | Greco, Alessandro Caterino, Mario Fera, Marcello Gerbino, Salvatore |
description | Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions. |
doi_str_mv | 10.3390/app10217758 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d</doaj_id><sourcerecordid>2534071924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBUnvyDwQ8SnS_d3OU2tZCix7qednsR9jSZuMmQfz3po1I5zIzj8d7Mw-AewSfCCngs24aBDESgskrMMFQ8JxQJK4v5lswa9s9HKpARCI4AcvXUIVOH7Ldd6gzH1O2jXXoYgp1lS1SFet4DKbNbH9GtrruvTbduH2kaHvThVjfgRuvD62b_fUp-FwudvO3fPO-Ws9fNrkhnHa5YEh4IwuOfWmNI5ITRyhFGpWkdLLQ1FODGONaOnx6BRpmkaSUM0aoKMgUrEddG_VeNSkcdfpRUQd1BmKqlE5dMAenMPWSS8OZ5pSSkmpnDbaecA996bgdtB5GrSbFr961ndrHPtXD-QoPblCgAtOB9TiyTIptm5z_d0VQnXJXF7mTXw2udGk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534071924</pqid></control><display><type>article</type><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</creator><creatorcontrib>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</creatorcontrib><description>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10217758</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Biomechanics ; Case studies ; Collaboration ; Decision making ; Digital Twin ; Digital twins ; Ergonomics ; Factories ; Manufacturing ; Monitoring ; Production lines ; production process ; Risk assessment ; Robots ; Sensors ; Simulation ; Work stations ; Working conditions</subject><ispartof>Applied sciences, 2020-11, Vol.10 (21), p.7758</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</citedby><cites>FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</cites><orcidid>0000-0002-3418-355X ; 0000-0003-2288-3994 ; 0000-0002-5856-5704 ; 0000-0003-1854-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534071924/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534071924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Caterino, Mario</creatorcontrib><creatorcontrib>Fera, Marcello</creatorcontrib><creatorcontrib>Gerbino, Salvatore</creatorcontrib><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><title>Applied sciences</title><description>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</description><subject>Algorithms</subject><subject>Biomechanics</subject><subject>Case studies</subject><subject>Collaboration</subject><subject>Decision making</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>Ergonomics</subject><subject>Factories</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Production lines</subject><subject>production process</subject><subject>Risk assessment</subject><subject>Robots</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Work stations</subject><subject>Working conditions</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQXUTBUnvyDwQ8SnS_d3OU2tZCix7qednsR9jSZuMmQfz3po1I5zIzj8d7Mw-AewSfCCngs24aBDESgskrMMFQ8JxQJK4v5lswa9s9HKpARCI4AcvXUIVOH7Ldd6gzH1O2jXXoYgp1lS1SFet4DKbNbH9GtrruvTbduH2kaHvThVjfgRuvD62b_fUp-FwudvO3fPO-Ws9fNrkhnHa5YEh4IwuOfWmNI5ITRyhFGpWkdLLQ1FODGONaOnx6BRpmkaSUM0aoKMgUrEddG_VeNSkcdfpRUQd1BmKqlE5dMAenMPWSS8OZ5pSSkmpnDbaecA996bgdtB5GrSbFr961ndrHPtXD-QoPblCgAtOB9TiyTIptm5z_d0VQnXJXF7mTXw2udGk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Greco, Alessandro</creator><creator>Caterino, Mario</creator><creator>Fera, Marcello</creator><creator>Gerbino, Salvatore</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3418-355X</orcidid><orcidid>https://orcid.org/0000-0003-2288-3994</orcidid><orcidid>https://orcid.org/0000-0002-5856-5704</orcidid><orcidid>https://orcid.org/0000-0003-1854-9248</orcidid></search><sort><creationdate>20201101</creationdate><title>Digital Twin for Monitoring Ergonomics during Manufacturing Production</title><author>Greco, Alessandro ; Caterino, Mario ; Fera, Marcello ; Gerbino, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biomechanics</topic><topic>Case studies</topic><topic>Collaboration</topic><topic>Decision making</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>Ergonomics</topic><topic>Factories</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Production lines</topic><topic>production process</topic><topic>Risk assessment</topic><topic>Robots</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Work stations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, Alessandro</creatorcontrib><creatorcontrib>Caterino, Mario</creatorcontrib><creatorcontrib>Fera, Marcello</creatorcontrib><creatorcontrib>Gerbino, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, Alessandro</au><au>Caterino, Mario</au><au>Fera, Marcello</au><au>Gerbino, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Twin for Monitoring Ergonomics during Manufacturing Production</atitle><jtitle>Applied sciences</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>21</issue><spage>7758</spage><pages>7758-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Within the era of smart factories, concerning the ergonomics related to production processes, the Digital Twin (DT) is the key to set up novel models for monitoring the performance of manual work activities, which are able to provide results in near real time and to support the decision-making process for improving the working conditions. This paper aims to propose a methodological framework that, by implementing a human DT, and supports the monitoring and the decision making regarding the ergonomics performances of manual production lines. A case study, carried out in a laboratory, is presented for demonstrating the applicability and the effectiveness of the proposed framework. The results show how it is possible to identify the operational issues of a manual workstation and how it is possible to propose and test improving solutions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10217758</doi><orcidid>https://orcid.org/0000-0002-3418-355X</orcidid><orcidid>https://orcid.org/0000-0003-2288-3994</orcidid><orcidid>https://orcid.org/0000-0002-5856-5704</orcidid><orcidid>https://orcid.org/0000-0003-1854-9248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-11, Vol.10 (21), p.7758 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_24f868c65a6443b4aedc2df36f0fbe6d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Biomechanics Case studies Collaboration Decision making Digital Twin Digital twins Ergonomics Factories Manufacturing Monitoring Production lines production process Risk assessment Robots Sensors Simulation Work stations Working conditions |
title | Digital Twin for Monitoring Ergonomics during Manufacturing Production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Twin%20for%20Monitoring%20Ergonomics%20during%20Manufacturing%20Production&rft.jtitle=Applied%20sciences&rft.au=Greco,%20Alessandro&rft.date=2020-11-01&rft.volume=10&rft.issue=21&rft.spage=7758&rft.pages=7758-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10217758&rft_dat=%3Cproquest_doaj_%3E2534071924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-7517fc8962fbdce3863e3441a1b3be89a4f4c1556a8e221770c5d184465534793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534071924&rft_id=info:pmid/&rfr_iscdi=true |