Loading…

Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration

The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “...

Full description

Saved in:
Bibliographic Details
Published in:Eng (Basel, Switzerland) Switzerland), 2023-09, Vol.4 (3), p.2443-2467
Main Authors: Khalifa, Houdaifa, Tomomewo, Olusegun Stanley, Ndulue, Uchenna Frank, Berrehal, Badr Eddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13
cites cdi_FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13
container_end_page 2467
container_issue 3
container_start_page 2443
container_title Eng (Basel, Switzerland)
container_volume 4
creator Khalifa, Houdaifa
Tomomewo, Olusegun Stanley
Ndulue, Uchenna Frank
Berrehal, Badr Eddine
description The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “GeoVision”, achieves remarkable performance during its training phase with a mean accuracy of 95% and a precision of 98%. The model successfully predicts claystone, marl, and sandstone classes with high precision scores. Testing on new data yields an overall accuracy of 95%, providing valuable insights and setting a benchmark for future efforts. To address the limitations of current methodologies, such as time lags and lack of real-time data, we utilize drilling data as a unique endeavor to predict lithology. Our approach integrates nine drilling parameters, going beyond the narrow focus on the rate of penetration (ROP) often seen in previous research. The model was trained and evaluated using the open Volve field dataset, and careful data preprocessing was performed to reduce features, balance the sample distribution, and ensure an unbiased dataset. The innovative methodology demonstrates exceptional performance and offers substantial advantages for real-time geosteering. The accessibility of our models is enhanced through the user-friendly web app “GeoVision”, enabling effective utilization by drilling engineers and marking a significant advancement in the field.
doi_str_mv 10.3390/eng4030139
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_24fbd603dfe9462ebc9bd80c5d0287cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_24fbd603dfe9462ebc9bd80c5d0287cc</doaj_id><sourcerecordid>2869310522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhSMEElXphV9giRtSYGI7TnwshcJKi6jQVhytsT1OvcrGwU5V9cZPJ91FwGnejJ6-edKrqtcNvBNCw3uaBgkCGqGfVWdcdaKWTdM9_0-_rC5K2QMA77RsVXtW_fqK7i5OxLaEeYrTUH_AQp59JxzrXTwQu8nko1timlgK7DrlAx6XbVzu0piGR4aTZ7s0F3ZbVgD7mOM4PokbzHighXJhD6uZIftBll3OM9tMCw35yHlVvQg4Frr4M8-r2-tPu6sv9fbb583V5bZ2EmCpAwVwrrVK6w6AuAhBITatFyilEg4BLYImaJ20HVqLglrV9wi8lzI04rzanLg-4d7MOR4wP5qE0RwPKQ8G8xLdSIbLYL0C4QNpqThZp63vwbV-hXXOraw3J9ac0897KovZp_s8rfEN75UWDbScr663J5fLqZRM4e_XBsxTYeZfYeI3t9GJZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869310522</pqid></control><display><type>article</type><title>Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration</title><source>Publicly Available Content Database</source><creator>Khalifa, Houdaifa ; Tomomewo, Olusegun Stanley ; Ndulue, Uchenna Frank ; Berrehal, Badr Eddine</creator><creatorcontrib>Khalifa, Houdaifa ; Tomomewo, Olusegun Stanley ; Ndulue, Uchenna Frank ; Berrehal, Badr Eddine</creatorcontrib><description>The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “GeoVision”, achieves remarkable performance during its training phase with a mean accuracy of 95% and a precision of 98%. The model successfully predicts claystone, marl, and sandstone classes with high precision scores. Testing on new data yields an overall accuracy of 95%, providing valuable insights and setting a benchmark for future efforts. To address the limitations of current methodologies, such as time lags and lack of real-time data, we utilize drilling data as a unique endeavor to predict lithology. Our approach integrates nine drilling parameters, going beyond the narrow focus on the rate of penetration (ROP) often seen in previous research. The model was trained and evaluated using the open Volve field dataset, and careful data preprocessing was performed to reduce features, balance the sample distribution, and ensure an unbiased dataset. The innovative methodology demonstrates exceptional performance and offers substantial advantages for real-time geosteering. The accessibility of our models is enhanced through the user-friendly web app “GeoVision”, enabling effective utilization by drilling engineers and marking a significant advancement in the field.</description><identifier>ISSN: 2673-4117</identifier><identifier>EISSN: 2673-4117</identifier><identifier>DOI: 10.3390/eng4030139</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Applications programs ; Automation ; Classification ; Data collection ; Datasets ; Discriminant analysis ; Drilling ; drilling data ; Drilling machines (tools) ; Enhanced oil recovery ; Lithology ; lithology prediction ; Machine learning ; Mathematical models ; Neural networks ; optimized geosteering ; Parameters ; Real time ; Sandstone ; Support vector machines</subject><ispartof>Eng (Basel, Switzerland), 2023-09, Vol.4 (3), p.2443-2467</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13</citedby><cites>FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13</cites><orcidid>0009-0002-5535-1767 ; 0000-0003-2512-9022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869310522/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869310522?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Khalifa, Houdaifa</creatorcontrib><creatorcontrib>Tomomewo, Olusegun Stanley</creatorcontrib><creatorcontrib>Ndulue, Uchenna Frank</creatorcontrib><creatorcontrib>Berrehal, Badr Eddine</creatorcontrib><title>Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration</title><title>Eng (Basel, Switzerland)</title><description>The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “GeoVision”, achieves remarkable performance during its training phase with a mean accuracy of 95% and a precision of 98%. The model successfully predicts claystone, marl, and sandstone classes with high precision scores. Testing on new data yields an overall accuracy of 95%, providing valuable insights and setting a benchmark for future efforts. To address the limitations of current methodologies, such as time lags and lack of real-time data, we utilize drilling data as a unique endeavor to predict lithology. Our approach integrates nine drilling parameters, going beyond the narrow focus on the rate of penetration (ROP) often seen in previous research. The model was trained and evaluated using the open Volve field dataset, and careful data preprocessing was performed to reduce features, balance the sample distribution, and ensure an unbiased dataset. The innovative methodology demonstrates exceptional performance and offers substantial advantages for real-time geosteering. The accessibility of our models is enhanced through the user-friendly web app “GeoVision”, enabling effective utilization by drilling engineers and marking a significant advancement in the field.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applications programs</subject><subject>Automation</subject><subject>Classification</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Drilling</subject><subject>drilling data</subject><subject>Drilling machines (tools)</subject><subject>Enhanced oil recovery</subject><subject>Lithology</subject><subject>lithology prediction</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>optimized geosteering</subject><subject>Parameters</subject><subject>Real time</subject><subject>Sandstone</subject><subject>Support vector machines</subject><issn>2673-4117</issn><issn>2673-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv1DAQhSMEElXphV9giRtSYGI7TnwshcJKi6jQVhytsT1OvcrGwU5V9cZPJ91FwGnejJ6-edKrqtcNvBNCw3uaBgkCGqGfVWdcdaKWTdM9_0-_rC5K2QMA77RsVXtW_fqK7i5OxLaEeYrTUH_AQp59JxzrXTwQu8nko1timlgK7DrlAx6XbVzu0piGR4aTZ7s0F3ZbVgD7mOM4PokbzHighXJhD6uZIftBll3OM9tMCw35yHlVvQg4Frr4M8-r2-tPu6sv9fbb583V5bZ2EmCpAwVwrrVK6w6AuAhBITatFyilEg4BLYImaJ20HVqLglrV9wi8lzI04rzanLg-4d7MOR4wP5qE0RwPKQ8G8xLdSIbLYL0C4QNpqThZp63vwbV-hXXOraw3J9ac0897KovZp_s8rfEN75UWDbScr663J5fLqZRM4e_XBsxTYeZfYeI3t9GJZw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Khalifa, Houdaifa</creator><creator>Tomomewo, Olusegun Stanley</creator><creator>Ndulue, Uchenna Frank</creator><creator>Berrehal, Badr Eddine</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-5535-1767</orcidid><orcidid>https://orcid.org/0000-0003-2512-9022</orcidid></search><sort><creationdate>20230901</creationdate><title>Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration</title><author>Khalifa, Houdaifa ; Tomomewo, Olusegun Stanley ; Ndulue, Uchenna Frank ; Berrehal, Badr Eddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applications programs</topic><topic>Automation</topic><topic>Classification</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Drilling</topic><topic>drilling data</topic><topic>Drilling machines (tools)</topic><topic>Enhanced oil recovery</topic><topic>Lithology</topic><topic>lithology prediction</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>optimized geosteering</topic><topic>Parameters</topic><topic>Real time</topic><topic>Sandstone</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalifa, Houdaifa</creatorcontrib><creatorcontrib>Tomomewo, Olusegun Stanley</creatorcontrib><creatorcontrib>Ndulue, Uchenna Frank</creatorcontrib><creatorcontrib>Berrehal, Badr Eddine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Eng (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalifa, Houdaifa</au><au>Tomomewo, Olusegun Stanley</au><au>Ndulue, Uchenna Frank</au><au>Berrehal, Badr Eddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration</atitle><jtitle>Eng (Basel, Switzerland)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>2443</spage><epage>2467</epage><pages>2443-2467</pages><issn>2673-4117</issn><eissn>2673-4117</eissn><abstract>The accurate prediction of underground formation lithology class and tops is a critical challenge in the oil industry. This paper presents a machine-learning (ML) approach to predict lithology from drilling data, offering real-time litho-facies identification. The ML model, applied via the web app “GeoVision”, achieves remarkable performance during its training phase with a mean accuracy of 95% and a precision of 98%. The model successfully predicts claystone, marl, and sandstone classes with high precision scores. Testing on new data yields an overall accuracy of 95%, providing valuable insights and setting a benchmark for future efforts. To address the limitations of current methodologies, such as time lags and lack of real-time data, we utilize drilling data as a unique endeavor to predict lithology. Our approach integrates nine drilling parameters, going beyond the narrow focus on the rate of penetration (ROP) often seen in previous research. The model was trained and evaluated using the open Volve field dataset, and careful data preprocessing was performed to reduce features, balance the sample distribution, and ensure an unbiased dataset. The innovative methodology demonstrates exceptional performance and offers substantial advantages for real-time geosteering. The accessibility of our models is enhanced through the user-friendly web app “GeoVision”, enabling effective utilization by drilling engineers and marking a significant advancement in the field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/eng4030139</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0002-5535-1767</orcidid><orcidid>https://orcid.org/0000-0003-2512-9022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-4117
ispartof Eng (Basel, Switzerland), 2023-09, Vol.4 (3), p.2443-2467
issn 2673-4117
2673-4117
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_24fbd603dfe9462ebc9bd80c5d0287cc
source Publicly Available Content Database
subjects Accuracy
Algorithms
Applications programs
Automation
Classification
Data collection
Datasets
Discriminant analysis
Drilling
drilling data
Drilling machines (tools)
Enhanced oil recovery
Lithology
lithology prediction
Machine learning
Mathematical models
Neural networks
optimized geosteering
Parameters
Real time
Sandstone
Support vector machines
title Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Real-Time%20Prediction%20of%20Formation%20Lithology%20and%20Tops%20Using%20Drilling%20Parameters%20with%20a%20Web%20App%20Integration&rft.jtitle=Eng%20(Basel,%20Switzerland)&rft.au=Khalifa,%20Houdaifa&rft.date=2023-09-01&rft.volume=4&rft.issue=3&rft.spage=2443&rft.epage=2467&rft.pages=2443-2467&rft.issn=2673-4117&rft.eissn=2673-4117&rft_id=info:doi/10.3390/eng4030139&rft_dat=%3Cproquest_doaj_%3E2869310522%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fef0cc5b699700e23ff6aa15d3a4463ca0aba09e05c4b7abba3e5688a02844f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869310522&rft_id=info:pmid/&rfr_iscdi=true