Loading…

Highly defective ultra-small tetravalent MOF nanocrystals

The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal–Organic Framework...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-04, Vol.15 (1), p.3434-3434, Article 3434
Main Authors: Dai, Shan, Simms, Charlotte, Patriarche, Gilles, Daturi, Marco, Tissot, Antoine, Parac-Vogt, Tatjana N., Serre, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c526t-69411c0ae3db5633d226d7370880875e8b04e6bf1f3d7e29c6299fc6f51d0033
container_end_page 3434
container_issue 1
container_start_page 3434
container_title Nature communications
container_volume 15
creator Dai, Shan
Simms, Charlotte
Patriarche, Gilles
Daturi, Marco
Tissot, Antoine
Parac-Vogt, Tatjana N.
Serre, Christian
description The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal–Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4–6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions. Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.
doi_str_mv 10.1038/s41467-024-47426-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_251a94b7312c4f7e9096ed1806bb480b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_251a94b7312c4f7e9096ed1806bb480b</doaj_id><sourcerecordid>3045114526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-69411c0ae3db5633d226d7370880875e8b04e6bf1f3d7e29c6299fc6f51d0033</originalsourceid><addsrcrecordid>eNp9kstq3DAUhkVpaUKaF-iiGLppF051JFmXVQmh6QSmZJO9kOXjGQ8aO5XsIfP20cRpbotqI3H0nf9c-An5DPQMKNc_kgAhVUmZKIUSTJZ378gxowJKUIy_f_E-IqcpbWg-3IAW4iM54lpW3Bg4JmbRrdZhXzTYoh-7HRZTGKMr09aFUIyY3zsXsB-LP9eXRe_6wcd9Gl1In8iHNl94-nifkJvLXzcXi3J5_fvq4nxZ-orJsZRGAHjqkDd1JTlvGJON4opqTbWqUNdUoKxbaHmjkBkvmTGtl20FTe6Yn5CrWbYZ3Mbexm7r4t4OrrMPgSGurItj5wNaVoEzolYcmBetQkONxAY0lXUtNK2z1s9Z63aqt9j4PFZ04ZXo65--W9vVsLOQV24kZ1nh-6ywfpO3OF_aQ4yKygiqzA4y--2xWhz-TphGu-2SxxBcj8OULM8sgMhbyujXN-hmmGKf13qgtKRcgckUmykfh5Qitk8dALUHU9jZFDabwj6Ywt7lpC8vZ35K-WeBDPAZSPmrX2F8rv0f2Xsi7L_5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048603719</pqid></control><display><type>article</type><title>Highly defective ultra-small tetravalent MOF nanocrystals</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dai, Shan ; Simms, Charlotte ; Patriarche, Gilles ; Daturi, Marco ; Tissot, Antoine ; Parac-Vogt, Tatjana N. ; Serre, Christian</creator><creatorcontrib>Dai, Shan ; Simms, Charlotte ; Patriarche, Gilles ; Daturi, Marco ; Tissot, Antoine ; Parac-Vogt, Tatjana N. ; Serre, Christian</creatorcontrib><description>The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal–Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4–6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions. Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-47426-x</identifier><identifier>PMID: 38653991</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/137 ; 639/638/298/921 ; 639/638/77/887 ; 639/925/357/354 ; Catalysis ; Catalysts ; Chemical Sciences ; Crystal defects ; Crystallization ; Crystals ; Design defects ; Humanities and Social Sciences ; Hydrolysis ; Inorganic materials ; Metal-organic frameworks ; multidisciplinary ; Nanocrystals ; Nanoparticles ; Peptides ; Science ; Science (multidisciplinary) ; Zirconium</subject><ispartof>Nature communications, 2024-04, Vol.15 (1), p.3434-3434, Article 3434</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c526t-69411c0ae3db5633d226d7370880875e8b04e6bf1f3d7e29c6299fc6f51d0033</cites><orcidid>0000-0002-9334-9476 ; 0000-0001-5147-3260 ; 0000-0002-6188-3957 ; 0000-0001-5670-1584 ; 0000-0003-3040-2564 ; 0000-0003-1528-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3048603719/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3048603719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38653991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-paris.hal.science/hal-04594079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Shan</creatorcontrib><creatorcontrib>Simms, Charlotte</creatorcontrib><creatorcontrib>Patriarche, Gilles</creatorcontrib><creatorcontrib>Daturi, Marco</creatorcontrib><creatorcontrib>Tissot, Antoine</creatorcontrib><creatorcontrib>Parac-Vogt, Tatjana N.</creatorcontrib><creatorcontrib>Serre, Christian</creatorcontrib><title>Highly defective ultra-small tetravalent MOF nanocrystals</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal–Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4–6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions. Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.</description><subject>147/137</subject><subject>639/638/298/921</subject><subject>639/638/77/887</subject><subject>639/925/357/354</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Design defects</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysis</subject><subject>Inorganic materials</subject><subject>Metal-organic frameworks</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Peptides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Zirconium</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstq3DAUhkVpaUKaF-iiGLppF051JFmXVQmh6QSmZJO9kOXjGQ8aO5XsIfP20cRpbotqI3H0nf9c-An5DPQMKNc_kgAhVUmZKIUSTJZ378gxowJKUIy_f_E-IqcpbWg-3IAW4iM54lpW3Bg4JmbRrdZhXzTYoh-7HRZTGKMr09aFUIyY3zsXsB-LP9eXRe_6wcd9Gl1In8iHNl94-nifkJvLXzcXi3J5_fvq4nxZ-orJsZRGAHjqkDd1JTlvGJON4opqTbWqUNdUoKxbaHmjkBkvmTGtl20FTe6Yn5CrWbYZ3Mbexm7r4t4OrrMPgSGurItj5wNaVoEzolYcmBetQkONxAY0lXUtNK2z1s9Z63aqt9j4PFZ04ZXo65--W9vVsLOQV24kZ1nh-6ywfpO3OF_aQ4yKygiqzA4y--2xWhz-TphGu-2SxxBcj8OULM8sgMhbyujXN-hmmGKf13qgtKRcgckUmykfh5Qitk8dALUHU9jZFDabwj6Ywt7lpC8vZ35K-WeBDPAZSPmrX2F8rv0f2Xsi7L_5</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Dai, Shan</creator><creator>Simms, Charlotte</creator><creator>Patriarche, Gilles</creator><creator>Daturi, Marco</creator><creator>Tissot, Antoine</creator><creator>Parac-Vogt, Tatjana N.</creator><creator>Serre, Christian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9334-9476</orcidid><orcidid>https://orcid.org/0000-0001-5147-3260</orcidid><orcidid>https://orcid.org/0000-0002-6188-3957</orcidid><orcidid>https://orcid.org/0000-0001-5670-1584</orcidid><orcidid>https://orcid.org/0000-0003-3040-2564</orcidid><orcidid>https://orcid.org/0000-0003-1528-7641</orcidid></search><sort><creationdate>20240423</creationdate><title>Highly defective ultra-small tetravalent MOF nanocrystals</title><author>Dai, Shan ; Simms, Charlotte ; Patriarche, Gilles ; Daturi, Marco ; Tissot, Antoine ; Parac-Vogt, Tatjana N. ; Serre, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-69411c0ae3db5633d226d7370880875e8b04e6bf1f3d7e29c6299fc6f51d0033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>147/137</topic><topic>639/638/298/921</topic><topic>639/638/77/887</topic><topic>639/925/357/354</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Design defects</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysis</topic><topic>Inorganic materials</topic><topic>Metal-organic frameworks</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Peptides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shan</creatorcontrib><creatorcontrib>Simms, Charlotte</creatorcontrib><creatorcontrib>Patriarche, Gilles</creatorcontrib><creatorcontrib>Daturi, Marco</creatorcontrib><creatorcontrib>Tissot, Antoine</creatorcontrib><creatorcontrib>Parac-Vogt, Tatjana N.</creatorcontrib><creatorcontrib>Serre, Christian</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shan</au><au>Simms, Charlotte</au><au>Patriarche, Gilles</au><au>Daturi, Marco</au><au>Tissot, Antoine</au><au>Parac-Vogt, Tatjana N.</au><au>Serre, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly defective ultra-small tetravalent MOF nanocrystals</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3434</spage><epage>3434</epage><pages>3434-3434</pages><artnum>3434</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal–Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4–6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions. Crystalline materials’ properties are highly dependent on their size. Here authors report a general synthesis of ultrasmall (4–6 nm) and highly defective Zr/Hf-Metal Organic Frameworks nanoparticles that present enhanced peptide hydrolysis performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38653991</pmid><doi>10.1038/s41467-024-47426-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9334-9476</orcidid><orcidid>https://orcid.org/0000-0001-5147-3260</orcidid><orcidid>https://orcid.org/0000-0002-6188-3957</orcidid><orcidid>https://orcid.org/0000-0001-5670-1584</orcidid><orcidid>https://orcid.org/0000-0003-3040-2564</orcidid><orcidid>https://orcid.org/0000-0003-1528-7641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-04, Vol.15 (1), p.3434-3434, Article 3434
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_251a94b7312c4f7e9096ed1806bb480b
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/137
639/638/298/921
639/638/77/887
639/925/357/354
Catalysis
Catalysts
Chemical Sciences
Crystal defects
Crystallization
Crystals
Design defects
Humanities and Social Sciences
Hydrolysis
Inorganic materials
Metal-organic frameworks
multidisciplinary
Nanocrystals
Nanoparticles
Peptides
Science
Science (multidisciplinary)
Zirconium
title Highly defective ultra-small tetravalent MOF nanocrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20defective%20ultra-small%20tetravalent%20MOF%20nanocrystals&rft.jtitle=Nature%20communications&rft.au=Dai,%20Shan&rft.date=2024-04-23&rft.volume=15&rft.issue=1&rft.spage=3434&rft.epage=3434&rft.pages=3434-3434&rft.artnum=3434&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-47426-x&rft_dat=%3Cproquest_doaj_%3E3045114526%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-69411c0ae3db5633d226d7370880875e8b04e6bf1f3d7e29c6299fc6f51d0033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3048603719&rft_id=info:pmid/38653991&rfr_iscdi=true