Loading…

Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering

Remaining-useful-life prognostics for aircraft components are central for efficient and robust aircraft maintenance. In this paper, we propose an end-to-end approach to obtain online, model-based remaining-useful-life prognostics by learning from clusters of components with similar degradation trend...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace 2021-06, Vol.8 (6), p.168
Main Authors: Mitici, Mihaela, de Pater, Ingeborg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3
cites cdi_FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3
container_end_page
container_issue 6
container_start_page 168
container_title Aerospace
container_volume 8
creator Mitici, Mihaela
de Pater, Ingeborg
description Remaining-useful-life prognostics for aircraft components are central for efficient and robust aircraft maintenance. In this paper, we propose an end-to-end approach to obtain online, model-based remaining-useful-life prognostics by learning from clusters of components with similar degradation trends. Time-series degradation measurements are first clustered using dynamic time-warping. For each cluster, a degradation model and a corresponding failure threshold are proposed. These cluster-specific degradation models, together with a particle filtering algorithm, are further used to obtain online remaining-useful-life prognostics. As a case study, we consider the operational data of several cooling units originating from a fleet of aircraft. The cooling units are clustered based on their degradation trends and remaining-useful-life prognostics are obtained in an online manner. In general, this approach provides support for intelligent aircraft maintenance where the analysis of cluster-specific component degradation models is integrated into the predictive maintenance process.
doi_str_mv 10.3390/aerospace8060168
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2521591341914c0c8b13afae6bfe3b26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2521591341914c0c8b13afae6bfe3b26</doaj_id><sourcerecordid>2544549798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3</originalsourceid><addsrcrecordid>eNpdUUtLxDAQLqKgqHePAc_VvJo2R12fsKKIi8cyTSYlS7dZk-7Bf2_WFRHnMjMfM988vqI4Y_RCCE0vAWNIazDYUEWZavaKI865KqVgdP9PfFicprSk2TQTDa2Ois_ncfAjkqdgcSivIaElr7gCP_qxLxcJ3WYo594heYmhH0OavEnEhUiufDQR3ERmIWSKnixGPyWySNv4za-wfIe43iY32EewMPkwktmwSRPGDJ8UBw6GhKc__rhY3N2-zR7K-fP94-xqXhpR66nk1mluLANlHXbaAKOCOqkqhlCDrWqBoLtaQiXrhukGlEArG6op76TSII6Lxx2vDbBs19GvIH62AXz7DYTYtxDzVQO2vOKsyp-RTDNpqGk6JsABqs6h6LjKXOc7rnUMHxtMU7sMmzjm9XOvlJXUtW5yFd1VmaxKiuh-pzLabvVq_-slvgAvkotU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544549798</pqid></control><display><type>article</type><title>Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Mitici, Mihaela ; de Pater, Ingeborg</creator><creatorcontrib>Mitici, Mihaela ; de Pater, Ingeborg</creatorcontrib><description>Remaining-useful-life prognostics for aircraft components are central for efficient and robust aircraft maintenance. In this paper, we propose an end-to-end approach to obtain online, model-based remaining-useful-life prognostics by learning from clusters of components with similar degradation trends. Time-series degradation measurements are first clustered using dynamic time-warping. For each cluster, a degradation model and a corresponding failure threshold are proposed. These cluster-specific degradation models, together with a particle filtering algorithm, are further used to obtain online remaining-useful-life prognostics. As a case study, we consider the operational data of several cooling units originating from a fleet of aircraft. The cooling units are clustered based on their degradation trends and remaining-useful-life prognostics are obtained in an online manner. In general, this approach provides support for intelligent aircraft maintenance where the analysis of cluster-specific component degradation models is integrated into the predictive maintenance process.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace8060168</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging aircraft ; Aircraft ; Aircraft components ; aircraft Cooling Unit ; Aircraft maintenance ; Airplane engines ; Algorithms ; Clustering ; Cooling ; Degradation ; Kalman filters ; Libraries ; multi-model degradation ; Neural networks ; online remaining-useful-life prognostics ; particle filtering ; Predictive maintenance ; Sensors ; Standard deviation ; Time measurement ; Trends ; Warping</subject><ispartof>Aerospace, 2021-06, Vol.8 (6), p.168</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3</citedby><cites>FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3</cites><orcidid>0000-0002-1106-2552 ; 0000-0003-1414-0701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544549798/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544549798?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Mitici, Mihaela</creatorcontrib><creatorcontrib>de Pater, Ingeborg</creatorcontrib><title>Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering</title><title>Aerospace</title><description>Remaining-useful-life prognostics for aircraft components are central for efficient and robust aircraft maintenance. In this paper, we propose an end-to-end approach to obtain online, model-based remaining-useful-life prognostics by learning from clusters of components with similar degradation trends. Time-series degradation measurements are first clustered using dynamic time-warping. For each cluster, a degradation model and a corresponding failure threshold are proposed. These cluster-specific degradation models, together with a particle filtering algorithm, are further used to obtain online remaining-useful-life prognostics. As a case study, we consider the operational data of several cooling units originating from a fleet of aircraft. The cooling units are clustered based on their degradation trends and remaining-useful-life prognostics are obtained in an online manner. In general, this approach provides support for intelligent aircraft maintenance where the analysis of cluster-specific component degradation models is integrated into the predictive maintenance process.</description><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Aircraft components</subject><subject>aircraft Cooling Unit</subject><subject>Aircraft maintenance</subject><subject>Airplane engines</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Cooling</subject><subject>Degradation</subject><subject>Kalman filters</subject><subject>Libraries</subject><subject>multi-model degradation</subject><subject>Neural networks</subject><subject>online remaining-useful-life prognostics</subject><subject>particle filtering</subject><subject>Predictive maintenance</subject><subject>Sensors</subject><subject>Standard deviation</subject><subject>Time measurement</subject><subject>Trends</subject><subject>Warping</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUUtLxDAQLqKgqHePAc_VvJo2R12fsKKIi8cyTSYlS7dZk-7Bf2_WFRHnMjMfM988vqI4Y_RCCE0vAWNIazDYUEWZavaKI865KqVgdP9PfFicprSk2TQTDa2Ois_ncfAjkqdgcSivIaElr7gCP_qxLxcJ3WYo594heYmhH0OavEnEhUiufDQR3ERmIWSKnixGPyWySNv4za-wfIe43iY32EewMPkwktmwSRPGDJ8UBw6GhKc__rhY3N2-zR7K-fP94-xqXhpR66nk1mluLANlHXbaAKOCOqkqhlCDrWqBoLtaQiXrhukGlEArG6op76TSII6Lxx2vDbBs19GvIH62AXz7DYTYtxDzVQO2vOKsyp-RTDNpqGk6JsABqs6h6LjKXOc7rnUMHxtMU7sMmzjm9XOvlJXUtW5yFd1VmaxKiuh-pzLabvVq_-slvgAvkotU</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Mitici, Mihaela</creator><creator>de Pater, Ingeborg</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1106-2552</orcidid><orcidid>https://orcid.org/0000-0003-1414-0701</orcidid></search><sort><creationdate>20210601</creationdate><title>Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering</title><author>Mitici, Mihaela ; de Pater, Ingeborg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Aircraft components</topic><topic>aircraft Cooling Unit</topic><topic>Aircraft maintenance</topic><topic>Airplane engines</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Cooling</topic><topic>Degradation</topic><topic>Kalman filters</topic><topic>Libraries</topic><topic>multi-model degradation</topic><topic>Neural networks</topic><topic>online remaining-useful-life prognostics</topic><topic>particle filtering</topic><topic>Predictive maintenance</topic><topic>Sensors</topic><topic>Standard deviation</topic><topic>Time measurement</topic><topic>Trends</topic><topic>Warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitici, Mihaela</creatorcontrib><creatorcontrib>de Pater, Ingeborg</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitici, Mihaela</au><au>de Pater, Ingeborg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering</atitle><jtitle>Aerospace</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>8</volume><issue>6</issue><spage>168</spage><pages>168-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>Remaining-useful-life prognostics for aircraft components are central for efficient and robust aircraft maintenance. In this paper, we propose an end-to-end approach to obtain online, model-based remaining-useful-life prognostics by learning from clusters of components with similar degradation trends. Time-series degradation measurements are first clustered using dynamic time-warping. For each cluster, a degradation model and a corresponding failure threshold are proposed. These cluster-specific degradation models, together with a particle filtering algorithm, are further used to obtain online remaining-useful-life prognostics. As a case study, we consider the operational data of several cooling units originating from a fleet of aircraft. The cooling units are clustered based on their degradation trends and remaining-useful-life prognostics are obtained in an online manner. In general, this approach provides support for intelligent aircraft maintenance where the analysis of cluster-specific component degradation models is integrated into the predictive maintenance process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace8060168</doi><orcidid>https://orcid.org/0000-0002-1106-2552</orcidid><orcidid>https://orcid.org/0000-0003-1414-0701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4310
ispartof Aerospace, 2021-06, Vol.8 (6), p.168
issn 2226-4310
2226-4310
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2521591341914c0c8b13afae6bfe3b26
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Aging aircraft
Aircraft
Aircraft components
aircraft Cooling Unit
Aircraft maintenance
Airplane engines
Algorithms
Clustering
Cooling
Degradation
Kalman filters
Libraries
multi-model degradation
Neural networks
online remaining-useful-life prognostics
particle filtering
Predictive maintenance
Sensors
Standard deviation
Time measurement
Trends
Warping
title Online Model-Based Remaining-Useful-Life Prognostics for Aircraft Cooling Units Using Time-Warping Degradation Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Model-Based%20Remaining-Useful-Life%20Prognostics%20for%20Aircraft%20Cooling%20Units%20Using%20Time-Warping%20Degradation%20Clustering&rft.jtitle=Aerospace&rft.au=Mitici,%20Mihaela&rft.date=2021-06-01&rft.volume=8&rft.issue=6&rft.spage=168&rft.pages=168-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace8060168&rft_dat=%3Cproquest_doaj_%3E2544549798%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-2df92cd1a6dfeb9ca1030f4651ea7ad573ea9b74a5478198a63ed480902b469a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544549798&rft_id=info:pmid/&rfr_iscdi=true