Loading…

Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases

Precision medicine is envisioned as the future of cardiovascular healthcare, offering a more tailored and effective method for managing cardiovascular diseases compared to the traditional one-size-fits-all approaches. The complex role of oxidative stress in chronic diseases within the framework of p...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2024-09, Vol.13 (10), p.1163
Main Authors: Drăgoi, Cristina Manuela, Diaconu, Camelia Cristina, Nicolae, Alina Crenguța, Dumitrescu, Ion-Bogdan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precision medicine is envisioned as the future of cardiovascular healthcare, offering a more tailored and effective method for managing cardiovascular diseases compared to the traditional one-size-fits-all approaches. The complex role of oxidative stress in chronic diseases within the framework of precision medicine was carefully explored, delving into the cellular redox status and its critical involvement in the pathophysiological complexity of cardiovascular diseases (CVDs). The review outlines the mechanisms of reactive oxygen species generation and the function of antioxidants in maintaining redox balance. It emphasizes the elevated reactive oxygen species concentrations observed in heart failure and their detrimental impact on cardiovascular health. Various sources of ROS within the cardiovascular system are examined, including mitochondrial dysfunction, which contributes to oxidative stress and mitochondrial DNA degradation. The article also addresses oxidative stress's role in myocardial remodeling, a process pivotal to the progression of heart diseases. By integrating these aspects, the review underscores the importance of redox homeostasis and identifies molecular biomarkers that can enhance precision therapy for CVDs. The insights provided aim to pave the way for targeted therapeutic strategies that mitigate oxidative stress, thereby improving patient outcomes in cardiovascular medicine.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox13101163