Loading…

Tryptophan Promotes the Production of Xanthophyll Compounds in Yellow Abdominal Fat through HAAO

Abdominal fat, which in the past was often regarded as waste and discarded, has in recent years been used as a fat source to produce meat by-products. Yellow abdominal fat has higher economic value. Therefore, improving the color of abdominal fat plays an important role in improving the appearance o...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2024-06, Vol.14 (11), p.1555
Main Authors: Liu, Xiaojing, Men, Lilin, Chen, Yanji, Wang, Yongli, Wang, Yanke, Zhang, Xu, Cui, Huanxian, Guo, Yuming, Wen, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abdominal fat, which in the past was often regarded as waste and discarded, has in recent years been used as a fat source to produce meat by-products. Yellow abdominal fat has higher economic value. Therefore, improving the color of abdominal fat plays an important role in improving the appearance of meat products. This study aimed to identify the contributors and the regulatory network involved in the formation of yellow and white color in abdominal fat. We found that four xanthophyll compounds were significantly different in yellow and white abdominal fat chicken, including zeaxanthin, lutein, canthaxanthin, and β-cryptoxanthin. There were 551 different and 8 common metabolites significantly correlated with these 4 xanthophyll compounds. Similarly, a total of 54 common genes were identified in 4 common related pathways (Complement and coagulation cascades, Metabolic pathways, PPAR signaling pathway, Carbon metabolism) of the 8 common metabolites. The high expression of in the yellow abdominal fat group leads to the degradation of tryptophan and its intermediate 5-hydroxyindole, and subsequently to the formation of the four xanthophyll compounds. This process is also regulated by tyrosine, kynurenine 3-monooxygenase (KMO), homogentisate 1, 2-dioxygenase (HGD), etc. Together, these findings show the effect of tryptophan on abdominal fat color, as well as a negative regulatory effect of and 5-hydroxyindole on the production of xanthophyll compounds involved in abdominal fat coloration.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani14111555