Loading…

Isothermal and Two-Temperature Zone Selenization of Mo Layers

Glass/Mo, Mo foil, glass/Mo/In, and glass/Mo/Cu stacked layers were selenized in closed vacuum tubes by isothermal and/or two-temperature zone annealing in Se vapors. The selenization process was studied dependent on Se vapor pressure, temperature and time. Samples were selenized from 375 to 580°C f...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2012-01, Vol.2012 (2012), p.1-11
Main Authors: Kaupmees, L., Altosaar, M., Volobujeva, O., Raadik, T., Grossberg, M., Danilson, M., Mellikov, E., Barvinschi, P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glass/Mo, Mo foil, glass/Mo/In, and glass/Mo/Cu stacked layers were selenized in closed vacuum tubes by isothermal and/or two-temperature zone annealing in Se vapors. The selenization process was studied dependent on Se vapor pressure, temperature and time. Samples were selenized from 375 to 580°C for 30 and 60 minutes. The applied Se pressure was varied between 130 and 4.4⋅103 Pa. The increase of MoSe2 film thickness was found to depend on the origin of Mo. MoSe2 thickness dL on Mo-foil was much higher than on sputtered Mo layers, and it depended linearly on time and as a power function dL~PSe1/2 on Se vapor pressure. The residual oxygen content in the formed MoSe2 layers was much lower in the two-zone selenization process. If Mo was covered with Cu or In before selenization, these were found to diffuse into formed MoSe2 layer. All the MoSe2 layers showed p-type conductivity.
ISSN:1687-8434
1687-8442
DOI:10.1155/2012/345762