Loading…
Water Quality Threats, Perceptions of Climate Change and Behavioral Responses among Farmers in the Ethiopian Rift Valley
This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availabil...
Saved in:
Published in: | Climate (Basel) 2021-06, Vol.9 (6), p.92 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availability and raising dependence on groundwater. The study data come from surveys with 147 farmers living in the Ziway–Shala basin and water quality assessments of 162 samples from groundwater wells and surface water. Most groundwater samples were found to be unsuitable for long term agricultural use due to their high salinity and sodium adsorption ratio, which has implications for soil permeability, as well as elevated bicarbonate, boron and residual sodium carbonate concentrations. The survey data indicate that water sufficiency is a major concern for farmers that leads to frequent crop failures, especially due to erratic and insufficient rainfall. An important adaptation mechanism for farmers is the use of improved crop varieties, but major barriers to adaptation include a lack of access to irrigation water, credit or savings, appropriate seeds, and knowledge or information on weather and climate conditions. Local (development) agents are identified as vital to enhancing farmers’ knowledge of risks and solutions, and extension programs must therefore continue to promote resilience and adaptation in the area. Unfortunately, much of the MER groundwater that could be used to cope with declining viability of rainfed agriculture and surface water availability, is poor in quality. The use of saline groundwater could jeopardize the agricultural sector, and most notably commercial horticulture and floriculture activities. This study highlights the complex nexus of water quality and sufficiency challenges facing the agriculture sector in the region, and should help decision-makers to design feasible strategies for enhancing adaptation and food security. |
---|---|
ISSN: | 2225-1154 2225-1154 |
DOI: | 10.3390/cli9060092 |