Loading…

The mechanism of DNA unwinding by the eukaryotic replicative helicase

Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG)...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-05, Vol.10 (1), p.2159-2159, Article 2159
Main Authors: Burnham, Daniel R., Kose, Hazal B., Hoyle, Rebecca B., Yardimci, Hasan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3
cites cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3
container_end_page 2159
container_issue 1
container_start_page 2159
container_title Nature communications
container_volume 10
creator Burnham, Daniel R.
Kose, Hazal B.
Hoyle, Rebecca B.
Yardimci, Hasan
description Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication. How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.
doi_str_mv 10.1038/s41467-019-09896-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84</doaj_id><sourcerecordid>2231846042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqCDKH-iiitRNN2n9ih-bSohXkVDZwNpynOsZT5N4aidU_Pt6CKXQBd74yvf48_E9CH0g-AvBTH3NnHAha0x0jbXSoqZv0AHFnNREUvb2Wb2PjnLe4LKYJorzd2ifEaw04eQAnd2soRrAre0Y8lBFX53-OK7m8XcYuzCuqva-mooC5p823ccpuCrBtg_OTuEOqjXsygzv0Z63fYajx_0Q3Z6f3Zx8r6-uLy5Pjq9qJ7CYaqkAMHadtgq7lnGpqXPWat1iKYRswSpbjDWNdkpJ2njPQQrWEuWYU9qzQ3S5cLtoN2abwlBcmWiDeTiIaWVsKiZ7MLQRjSbAuMaOO45b0nlgjnHmifKKF9a3hbWd2wE6B-OUbP8C-rIzhrVZxTsjGiI5YQXw-RGQ4q8Z8mSGkB30vR0hztlQysq4Bea0SD_9J93EOY1lVEVFG8Kw5LKo6KJyKeacwD-ZIdjsQjdL6KaEbh5CNzv0x-ffeLryN-IiYIsgl9a4gvTv7VewfwBb_bZJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225130747</pqid></control><display><type>article</type><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</creator><creatorcontrib>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</creatorcontrib><description>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication. How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-09896-2</identifier><identifier>PMID: 31089141</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/151 ; 631/337/2265 ; Cdc45 protein ; Cell division ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA helicase ; DNA Helicases - isolation &amp; purification ; DNA Helicases - metabolism ; DNA Replication ; Drosophila Proteins - isolation &amp; purification ; Drosophila Proteins - metabolism ; Eukaryotes ; Fruit flies ; Genomes ; Humanities and Social Sciences ; Magnetic Phenomena ; Models, Molecular ; multidisciplinary ; Optical Tweezers ; Random walk ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Replication ; Science ; Science (multidisciplinary) ; Single Molecule Imaging - methods ; Unwinding</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2159-2159, Article 2159</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</citedby><cites>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</cites><orcidid>0000-0002-1645-1071 ; 0000-0002-3017-8964 ; 0000-0001-5009-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2225130747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2225130747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31089141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burnham, Daniel R.</creatorcontrib><creatorcontrib>Kose, Hazal B.</creatorcontrib><creatorcontrib>Hoyle, Rebecca B.</creatorcontrib><creatorcontrib>Yardimci, Hasan</creatorcontrib><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication. How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</description><subject>631/337/151</subject><subject>631/337/2265</subject><subject>Cdc45 protein</subject><subject>Cell division</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA helicase</subject><subject>DNA Helicases - isolation &amp; purification</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Replication</subject><subject>Drosophila Proteins - isolation &amp; purification</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Fruit flies</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic Phenomena</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Optical Tweezers</subject><subject>Random walk</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Replication</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single Molecule Imaging - methods</subject><subject>Unwinding</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtP3DAUha2qqCDKH-iiitRNN2n9ih-bSohXkVDZwNpynOsZT5N4aidU_Pt6CKXQBd74yvf48_E9CH0g-AvBTH3NnHAha0x0jbXSoqZv0AHFnNREUvb2Wb2PjnLe4LKYJorzd2ifEaw04eQAnd2soRrAre0Y8lBFX53-OK7m8XcYuzCuqva-mooC5p823ccpuCrBtg_OTuEOqjXsygzv0Z63fYajx_0Q3Z6f3Zx8r6-uLy5Pjq9qJ7CYaqkAMHadtgq7lnGpqXPWat1iKYRswSpbjDWNdkpJ2njPQQrWEuWYU9qzQ3S5cLtoN2abwlBcmWiDeTiIaWVsKiZ7MLQRjSbAuMaOO45b0nlgjnHmifKKF9a3hbWd2wE6B-OUbP8C-rIzhrVZxTsjGiI5YQXw-RGQ4q8Z8mSGkB30vR0hztlQysq4Bea0SD_9J93EOY1lVEVFG8Kw5LKo6KJyKeacwD-ZIdjsQjdL6KaEbh5CNzv0x-ffeLryN-IiYIsgl9a4gvTv7VewfwBb_bZJ</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Burnham, Daniel R.</creator><creator>Kose, Hazal B.</creator><creator>Hoyle, Rebecca B.</creator><creator>Yardimci, Hasan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1645-1071</orcidid><orcidid>https://orcid.org/0000-0002-3017-8964</orcidid><orcidid>https://orcid.org/0000-0001-5009-1391</orcidid></search><sort><creationdate>20190514</creationdate><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><author>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/337/151</topic><topic>631/337/2265</topic><topic>Cdc45 protein</topic><topic>Cell division</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA helicase</topic><topic>DNA Helicases - isolation &amp; purification</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Replication</topic><topic>Drosophila Proteins - isolation &amp; purification</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Fruit flies</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic Phenomena</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Optical Tweezers</topic><topic>Random walk</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Replication</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single Molecule Imaging - methods</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnham, Daniel R.</creatorcontrib><creatorcontrib>Kose, Hazal B.</creatorcontrib><creatorcontrib>Hoyle, Rebecca B.</creatorcontrib><creatorcontrib>Yardimci, Hasan</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnham, Daniel R.</au><au>Kose, Hazal B.</au><au>Hoyle, Rebecca B.</au><au>Yardimci, Hasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of DNA unwinding by the eukaryotic replicative helicase</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-14</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2159</spage><epage>2159</epage><pages>2159-2159</pages><artnum>2159</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication. How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31089141</pmid><doi>10.1038/s41467-019-09896-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1645-1071</orcidid><orcidid>https://orcid.org/0000-0002-3017-8964</orcidid><orcidid>https://orcid.org/0000-0001-5009-1391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-05, Vol.10 (1), p.2159-2159, Article 2159
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84
source PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/337/151
631/337/2265
Cdc45 protein
Cell division
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA helicase
DNA Helicases - isolation & purification
DNA Helicases - metabolism
DNA Replication
Drosophila Proteins - isolation & purification
Drosophila Proteins - metabolism
Eukaryotes
Fruit flies
Genomes
Humanities and Social Sciences
Magnetic Phenomena
Models, Molecular
multidisciplinary
Optical Tweezers
Random walk
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Replication
Science
Science (multidisciplinary)
Single Molecule Imaging - methods
Unwinding
title The mechanism of DNA unwinding by the eukaryotic replicative helicase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20DNA%20unwinding%20by%20the%20eukaryotic%20replicative%20helicase&rft.jtitle=Nature%20communications&rft.au=Burnham,%20Daniel%20R.&rft.date=2019-05-14&rft.volume=10&rft.issue=1&rft.spage=2159&rft.epage=2159&rft.pages=2159-2159&rft.artnum=2159&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-09896-2&rft_dat=%3Cproquest_doaj_%3E2231846042%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225130747&rft_id=info:pmid/31089141&rfr_iscdi=true