Loading…
The mechanism of DNA unwinding by the eukaryotic replicative helicase
Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG)...
Saved in:
Published in: | Nature communications 2019-05, Vol.10 (1), p.2159-2159, Article 2159 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3 |
container_end_page | 2159 |
container_issue | 1 |
container_start_page | 2159 |
container_title | Nature communications |
container_volume | 10 |
creator | Burnham, Daniel R. Kose, Hazal B. Hoyle, Rebecca B. Yardimci, Hasan |
description | Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant
Drosophila melanogaster
CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause. |
doi_str_mv | 10.1038/s41467-019-09896-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84</doaj_id><sourcerecordid>2231846042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqCDKH-iiitRNN2n9ih-bSohXkVDZwNpynOsZT5N4aidU_Pt6CKXQBd74yvf48_E9CH0g-AvBTH3NnHAha0x0jbXSoqZv0AHFnNREUvb2Wb2PjnLe4LKYJorzd2ifEaw04eQAnd2soRrAre0Y8lBFX53-OK7m8XcYuzCuqva-mooC5p823ccpuCrBtg_OTuEOqjXsygzv0Z63fYajx_0Q3Z6f3Zx8r6-uLy5Pjq9qJ7CYaqkAMHadtgq7lnGpqXPWat1iKYRswSpbjDWNdkpJ2njPQQrWEuWYU9qzQ3S5cLtoN2abwlBcmWiDeTiIaWVsKiZ7MLQRjSbAuMaOO45b0nlgjnHmifKKF9a3hbWd2wE6B-OUbP8C-rIzhrVZxTsjGiI5YQXw-RGQ4q8Z8mSGkB30vR0hztlQysq4Bea0SD_9J93EOY1lVEVFG8Kw5LKo6KJyKeacwD-ZIdjsQjdL6KaEbh5CNzv0x-ffeLryN-IiYIsgl9a4gvTv7VewfwBb_bZJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225130747</pqid></control><display><type>article</type><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</creator><creatorcontrib>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</creatorcontrib><description>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant
Drosophila melanogaster
CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-09896-2</identifier><identifier>PMID: 31089141</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/151 ; 631/337/2265 ; Cdc45 protein ; Cell division ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA helicase ; DNA Helicases - isolation & purification ; DNA Helicases - metabolism ; DNA Replication ; Drosophila Proteins - isolation & purification ; Drosophila Proteins - metabolism ; Eukaryotes ; Fruit flies ; Genomes ; Humanities and Social Sciences ; Magnetic Phenomena ; Models, Molecular ; multidisciplinary ; Optical Tweezers ; Random walk ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Replication ; Science ; Science (multidisciplinary) ; Single Molecule Imaging - methods ; Unwinding</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2159-2159, Article 2159</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</citedby><cites>FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</cites><orcidid>0000-0002-1645-1071 ; 0000-0002-3017-8964 ; 0000-0001-5009-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2225130747/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2225130747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31089141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burnham, Daniel R.</creatorcontrib><creatorcontrib>Kose, Hazal B.</creatorcontrib><creatorcontrib>Hoyle, Rebecca B.</creatorcontrib><creatorcontrib>Yardimci, Hasan</creatorcontrib><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant
Drosophila melanogaster
CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</description><subject>631/337/151</subject><subject>631/337/2265</subject><subject>Cdc45 protein</subject><subject>Cell division</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA helicase</subject><subject>DNA Helicases - isolation & purification</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Replication</subject><subject>Drosophila Proteins - isolation & purification</subject><subject>Drosophila Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Fruit flies</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic Phenomena</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Optical Tweezers</subject><subject>Random walk</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Replication</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single Molecule Imaging - methods</subject><subject>Unwinding</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtP3DAUha2qqCDKH-iiitRNN2n9ih-bSohXkVDZwNpynOsZT5N4aidU_Pt6CKXQBd74yvf48_E9CH0g-AvBTH3NnHAha0x0jbXSoqZv0AHFnNREUvb2Wb2PjnLe4LKYJorzd2ifEaw04eQAnd2soRrAre0Y8lBFX53-OK7m8XcYuzCuqva-mooC5p823ccpuCrBtg_OTuEOqjXsygzv0Z63fYajx_0Q3Z6f3Zx8r6-uLy5Pjq9qJ7CYaqkAMHadtgq7lnGpqXPWat1iKYRswSpbjDWNdkpJ2njPQQrWEuWYU9qzQ3S5cLtoN2abwlBcmWiDeTiIaWVsKiZ7MLQRjSbAuMaOO45b0nlgjnHmifKKF9a3hbWd2wE6B-OUbP8C-rIzhrVZxTsjGiI5YQXw-RGQ4q8Z8mSGkB30vR0hztlQysq4Bea0SD_9J93EOY1lVEVFG8Kw5LKo6KJyKeacwD-ZIdjsQjdL6KaEbh5CNzv0x-ffeLryN-IiYIsgl9a4gvTv7VewfwBb_bZJ</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Burnham, Daniel R.</creator><creator>Kose, Hazal B.</creator><creator>Hoyle, Rebecca B.</creator><creator>Yardimci, Hasan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1645-1071</orcidid><orcidid>https://orcid.org/0000-0002-3017-8964</orcidid><orcidid>https://orcid.org/0000-0001-5009-1391</orcidid></search><sort><creationdate>20190514</creationdate><title>The mechanism of DNA unwinding by the eukaryotic replicative helicase</title><author>Burnham, Daniel R. ; Kose, Hazal B. ; Hoyle, Rebecca B. ; Yardimci, Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/337/151</topic><topic>631/337/2265</topic><topic>Cdc45 protein</topic><topic>Cell division</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA helicase</topic><topic>DNA Helicases - isolation & purification</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Replication</topic><topic>Drosophila Proteins - isolation & purification</topic><topic>Drosophila Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Fruit flies</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic Phenomena</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Optical Tweezers</topic><topic>Random walk</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Replication</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single Molecule Imaging - methods</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnham, Daniel R.</creatorcontrib><creatorcontrib>Kose, Hazal B.</creatorcontrib><creatorcontrib>Hoyle, Rebecca B.</creatorcontrib><creatorcontrib>Yardimci, Hasan</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnham, Daniel R.</au><au>Kose, Hazal B.</au><au>Hoyle, Rebecca B.</au><au>Yardimci, Hasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of DNA unwinding by the eukaryotic replicative helicase</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-14</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2159</spage><epage>2159</epage><pages>2159-2159</pages><artnum>2159</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant
Drosophila melanogaster
CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
How the eukaryotic helicase unzips DNA during replication is not well understood. By measuring the real-time motion of purified CMG unwinding DNA with magnetic tweezers, the authors reveal the dynamics where isolated CMG unwinds via a biased random walk with proclivity to pause.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31089141</pmid><doi>10.1038/s41467-019-09896-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1645-1071</orcidid><orcidid>https://orcid.org/0000-0002-3017-8964</orcidid><orcidid>https://orcid.org/0000-0001-5009-1391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-05, Vol.10 (1), p.2159-2159, Article 2159 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_256591e3490c4c40b1dfe3c343f18f84 |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/337/151 631/337/2265 Cdc45 protein Cell division Deoxyribonucleic acid DNA DNA biosynthesis DNA helicase DNA Helicases - isolation & purification DNA Helicases - metabolism DNA Replication Drosophila Proteins - isolation & purification Drosophila Proteins - metabolism Eukaryotes Fruit flies Genomes Humanities and Social Sciences Magnetic Phenomena Models, Molecular multidisciplinary Optical Tweezers Random walk Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Replication Science Science (multidisciplinary) Single Molecule Imaging - methods Unwinding |
title | The mechanism of DNA unwinding by the eukaryotic replicative helicase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20DNA%20unwinding%20by%20the%20eukaryotic%20replicative%20helicase&rft.jtitle=Nature%20communications&rft.au=Burnham,%20Daniel%20R.&rft.date=2019-05-14&rft.volume=10&rft.issue=1&rft.spage=2159&rft.epage=2159&rft.pages=2159-2159&rft.artnum=2159&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-09896-2&rft_dat=%3Cproquest_doaj_%3E2231846042%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-78ee00cd9a80cb34792ccaa99b07667bea8a089559c88725ff4e763b18c3c89f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225130747&rft_id=info:pmid/31089141&rfr_iscdi=true |