Loading…
rtestim: Time-varying reproduction number estimation with trend filtering
To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable...
Saved in:
Published in: | PLoS computational biology 2024-08, Vol.20 (8), p.e1012324 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3 |
container_end_page | |
container_issue | 8 |
container_start_page | e1012324 |
container_title | PLoS computational biology |
container_volume | 20 |
creator | Liu, Jiaping Cai, Zhenglun Gustafson, Paul McDonald, Daniel J |
description | To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim. |
doi_str_mv | 10.1371/journal.pcbi.1012324 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807061788</galeid><doaj_id>oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b</doaj_id><sourcerecordid>A807061788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</originalsourceid><addsrcrecordid>eNqVkt1rFDEUxQex2Fr9D0QGfNGH2eYmM5OMb6X4sVBa0PockszNmmVmsiaZav97sx8WF3yRPCRcfueQezhF8QrIAhiHi7Wfw6SGxcZotwAClNH6SXEGTcMqzhrx9K_3afE8xjUh-dm1z4pT1gFpqaBnxTIkjMmN78s7N2J1r8KDm1ZlwE3w_WyS81M5zaPGUO44tZv8dOl7mQJOfWndkDBkzYvixKoh4svDfV58-_jh7upzdX37aXl1eV0ZJniqOoAakAoCmiHQptWCY63b3oDArusUcMoRGkaIUpqyWrRCg-DaWqu57dl5sdz79l6t5SbkP4UH6ZWTu4EPK6lCcmZASRtOe2NbA0bVPTddoyAn1bS1ZXXHdfZ6u_fK2_6Y84JydNHgMKgJ_RwlI6ITXFAQGX2zR1cqO7vJ-hSU2eLyUhBOWuBiSy3-QeXT4-iMnzDHhceCd0eCzCT8lVZqjlEuv375D_bmmK33rAk-xoD2MSkgctsfeeiP3PZHHvqTZa8Pgcx6xP5R9Kcw7DdDD8Dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089878218</pqid></control><display><type>article</type><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J</creator><contributor>Struchiner, Claudio José</contributor><creatorcontrib>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J ; Struchiner, Claudio José</creatorcontrib><description>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012324</identifier><identifier>PMID: 39106282</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Basic Reproduction Number ; Communicable Diseases - epidemiology ; Computational Biology - methods ; Computer Simulation ; Disease transmission ; Epidemiological Models ; Epidemiologists ; Forecasts and trends ; Humans ; Medical research ; Medicine, Experimental ; Methods ; Models, Statistical ; Poisson Distribution ; Sentinel health events ; Software</subject><ispartof>PLoS computational biology, 2024-08, Vol.20 (8), p.e1012324</ispartof><rights>Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</cites><orcidid>0009-0002-8584-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,37011</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39106282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Struchiner, Claudio José</contributor><creatorcontrib>Liu, Jiaping</creatorcontrib><creatorcontrib>Cai, Zhenglun</creatorcontrib><creatorcontrib>Gustafson, Paul</creatorcontrib><creatorcontrib>McDonald, Daniel J</creatorcontrib><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Basic Reproduction Number</subject><subject>Communicable Diseases - epidemiology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Disease transmission</subject><subject>Epidemiological Models</subject><subject>Epidemiologists</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Poisson Distribution</subject><subject>Sentinel health events</subject><subject>Software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkt1rFDEUxQex2Fr9D0QGfNGH2eYmM5OMb6X4sVBa0PockszNmmVmsiaZav97sx8WF3yRPCRcfueQezhF8QrIAhiHi7Wfw6SGxcZotwAClNH6SXEGTcMqzhrx9K_3afE8xjUh-dm1z4pT1gFpqaBnxTIkjMmN78s7N2J1r8KDm1ZlwE3w_WyS81M5zaPGUO44tZv8dOl7mQJOfWndkDBkzYvixKoh4svDfV58-_jh7upzdX37aXl1eV0ZJniqOoAakAoCmiHQptWCY63b3oDArusUcMoRGkaIUpqyWrRCg-DaWqu57dl5sdz79l6t5SbkP4UH6ZWTu4EPK6lCcmZASRtOe2NbA0bVPTddoyAn1bS1ZXXHdfZ6u_fK2_6Y84JydNHgMKgJ_RwlI6ITXFAQGX2zR1cqO7vJ-hSU2eLyUhBOWuBiSy3-QeXT4-iMnzDHhceCd0eCzCT8lVZqjlEuv375D_bmmK33rAk-xoD2MSkgctsfeeiP3PZHHvqTZa8Pgcx6xP5R9Kcw7DdDD8Dw</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Liu, Jiaping</creator><creator>Cai, Zhenglun</creator><creator>Gustafson, Paul</creator><creator>McDonald, Daniel J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8584-5645</orcidid></search><sort><creationdate>20240806</creationdate><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><author>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Basic Reproduction Number</topic><topic>Communicable Diseases - epidemiology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Disease transmission</topic><topic>Epidemiological Models</topic><topic>Epidemiologists</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Poisson Distribution</topic><topic>Sentinel health events</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiaping</creatorcontrib><creatorcontrib>Cai, Zhenglun</creatorcontrib><creatorcontrib>Gustafson, Paul</creatorcontrib><creatorcontrib>McDonald, Daniel J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiaping</au><au>Cai, Zhenglun</au><au>Gustafson, Paul</au><au>McDonald, Daniel J</au><au>Struchiner, Claudio José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>rtestim: Time-varying reproduction number estimation with trend filtering</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e1012324</spage><pages>e1012324-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39106282</pmid><doi>10.1371/journal.pcbi.1012324</doi><tpages>e1012324</tpages><orcidid>https://orcid.org/0009-0002-8584-5645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2024-08, Vol.20 (8), p.e1012324 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Analysis Basic Reproduction Number Communicable Diseases - epidemiology Computational Biology - methods Computer Simulation Disease transmission Epidemiological Models Epidemiologists Forecasts and trends Humans Medical research Medicine, Experimental Methods Models, Statistical Poisson Distribution Sentinel health events Software |
title | rtestim: Time-varying reproduction number estimation with trend filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=rtestim:%20Time-varying%20reproduction%20number%20estimation%20with%20trend%20filtering&rft.jtitle=PLoS%20computational%20biology&rft.au=Liu,%20Jiaping&rft.date=2024-08-06&rft.volume=20&rft.issue=8&rft.spage=e1012324&rft.pages=e1012324-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012324&rft_dat=%3Cgale_doaj_%3EA807061788%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3089878218&rft_id=info:pmid/39106282&rft_galeid=A807061788&rfr_iscdi=true |