Loading…

rtestim: Time-varying reproduction number estimation with trend filtering

To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2024-08, Vol.20 (8), p.e1012324
Main Authors: Liu, Jiaping, Cai, Zhenglun, Gustafson, Paul, McDonald, Daniel J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3
container_end_page
container_issue 8
container_start_page e1012324
container_title PLoS computational biology
container_volume 20
creator Liu, Jiaping
Cai, Zhenglun
Gustafson, Paul
McDonald, Daniel J
description To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.
doi_str_mv 10.1371/journal.pcbi.1012324
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807061788</galeid><doaj_id>oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b</doaj_id><sourcerecordid>A807061788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</originalsourceid><addsrcrecordid>eNqVkt1rFDEUxQex2Fr9D0QGfNGH2eYmM5OMb6X4sVBa0PockszNmmVmsiaZav97sx8WF3yRPCRcfueQezhF8QrIAhiHi7Wfw6SGxcZotwAClNH6SXEGTcMqzhrx9K_3afE8xjUh-dm1z4pT1gFpqaBnxTIkjMmN78s7N2J1r8KDm1ZlwE3w_WyS81M5zaPGUO44tZv8dOl7mQJOfWndkDBkzYvixKoh4svDfV58-_jh7upzdX37aXl1eV0ZJniqOoAakAoCmiHQptWCY63b3oDArusUcMoRGkaIUpqyWrRCg-DaWqu57dl5sdz79l6t5SbkP4UH6ZWTu4EPK6lCcmZASRtOe2NbA0bVPTddoyAn1bS1ZXXHdfZ6u_fK2_6Y84JydNHgMKgJ_RwlI6ITXFAQGX2zR1cqO7vJ-hSU2eLyUhBOWuBiSy3-QeXT4-iMnzDHhceCd0eCzCT8lVZqjlEuv375D_bmmK33rAk-xoD2MSkgctsfeeiP3PZHHvqTZa8Pgcx6xP5R9Kcw7DdDD8Dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089878218</pqid></control><display><type>article</type><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J</creator><contributor>Struchiner, Claudio José</contributor><creatorcontrib>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J ; Struchiner, Claudio José</creatorcontrib><description>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012324</identifier><identifier>PMID: 39106282</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Basic Reproduction Number ; Communicable Diseases - epidemiology ; Computational Biology - methods ; Computer Simulation ; Disease transmission ; Epidemiological Models ; Epidemiologists ; Forecasts and trends ; Humans ; Medical research ; Medicine, Experimental ; Methods ; Models, Statistical ; Poisson Distribution ; Sentinel health events ; Software</subject><ispartof>PLoS computational biology, 2024-08, Vol.20 (8), p.e1012324</ispartof><rights>Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</cites><orcidid>0009-0002-8584-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,37011</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39106282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Struchiner, Claudio José</contributor><creatorcontrib>Liu, Jiaping</creatorcontrib><creatorcontrib>Cai, Zhenglun</creatorcontrib><creatorcontrib>Gustafson, Paul</creatorcontrib><creatorcontrib>McDonald, Daniel J</creatorcontrib><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Basic Reproduction Number</subject><subject>Communicable Diseases - epidemiology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Disease transmission</subject><subject>Epidemiological Models</subject><subject>Epidemiologists</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Poisson Distribution</subject><subject>Sentinel health events</subject><subject>Software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkt1rFDEUxQex2Fr9D0QGfNGH2eYmM5OMb6X4sVBa0PockszNmmVmsiaZav97sx8WF3yRPCRcfueQezhF8QrIAhiHi7Wfw6SGxcZotwAClNH6SXEGTcMqzhrx9K_3afE8xjUh-dm1z4pT1gFpqaBnxTIkjMmN78s7N2J1r8KDm1ZlwE3w_WyS81M5zaPGUO44tZv8dOl7mQJOfWndkDBkzYvixKoh4svDfV58-_jh7upzdX37aXl1eV0ZJniqOoAakAoCmiHQptWCY63b3oDArusUcMoRGkaIUpqyWrRCg-DaWqu57dl5sdz79l6t5SbkP4UH6ZWTu4EPK6lCcmZASRtOe2NbA0bVPTddoyAn1bS1ZXXHdfZ6u_fK2_6Y84JydNHgMKgJ_RwlI6ITXFAQGX2zR1cqO7vJ-hSU2eLyUhBOWuBiSy3-QeXT4-iMnzDHhceCd0eCzCT8lVZqjlEuv375D_bmmK33rAk-xoD2MSkgctsfeeiP3PZHHvqTZa8Pgcx6xP5R9Kcw7DdDD8Dw</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Liu, Jiaping</creator><creator>Cai, Zhenglun</creator><creator>Gustafson, Paul</creator><creator>McDonald, Daniel J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8584-5645</orcidid></search><sort><creationdate>20240806</creationdate><title>rtestim: Time-varying reproduction number estimation with trend filtering</title><author>Liu, Jiaping ; Cai, Zhenglun ; Gustafson, Paul ; McDonald, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Basic Reproduction Number</topic><topic>Communicable Diseases - epidemiology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Disease transmission</topic><topic>Epidemiological Models</topic><topic>Epidemiologists</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Poisson Distribution</topic><topic>Sentinel health events</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiaping</creatorcontrib><creatorcontrib>Cai, Zhenglun</creatorcontrib><creatorcontrib>Gustafson, Paul</creatorcontrib><creatorcontrib>McDonald, Daniel J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiaping</au><au>Cai, Zhenglun</au><au>Gustafson, Paul</au><au>McDonald, Daniel J</au><au>Struchiner, Claudio José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>rtestim: Time-varying reproduction number estimation with trend filtering</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e1012324</spage><pages>e1012324-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39106282</pmid><doi>10.1371/journal.pcbi.1012324</doi><tpages>e1012324</tpages><orcidid>https://orcid.org/0009-0002-8584-5645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-08, Vol.20 (8), p.e1012324
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2572dcf6c1ca4d7c95a1101564f3497b
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Analysis
Basic Reproduction Number
Communicable Diseases - epidemiology
Computational Biology - methods
Computer Simulation
Disease transmission
Epidemiological Models
Epidemiologists
Forecasts and trends
Humans
Medical research
Medicine, Experimental
Methods
Models, Statistical
Poisson Distribution
Sentinel health events
Software
title rtestim: Time-varying reproduction number estimation with trend filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=rtestim:%20Time-varying%20reproduction%20number%20estimation%20with%20trend%20filtering&rft.jtitle=PLoS%20computational%20biology&rft.au=Liu,%20Jiaping&rft.date=2024-08-06&rft.volume=20&rft.issue=8&rft.spage=e1012324&rft.pages=e1012324-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012324&rft_dat=%3Cgale_doaj_%3EA807061788%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-91141e2801b3e1256b87e4b6dc18e999a1727e15300aab234868b187bfffb7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3089878218&rft_id=info:pmid/39106282&rft_galeid=A807061788&rfr_iscdi=true