Loading…

Microbial cell factories based on filamentous bacteria, yeasts, and fungi

Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major c...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2023-01, Vol.22 (1), p.20-20, Article 20
Main Authors: Ding, Qiang, Ye, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033
cites cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033
container_end_page 20
container_issue 1
container_start_page 20
container_title Microbial cell factories
container_volume 22
creator Ding, Qiang
Ye, Chao
description Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
doi_str_mv 10.1186/s12934-023-02025-1
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2587427f15cb458db8e30ef96221e785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735279462</galeid><doaj_id>oai_doaj_org_article_2587427f15cb458db8e30ef96221e785</doaj_id><sourcerecordid>A735279462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</originalsourceid><addsrcrecordid>eNptkl1r1jAYhosobk7_gAdS8MTBOvPZpCeDMaZ7YWPgx3FI0ic1L20zk1bcvzfdO7dVJIQ8JNdzh9y5i-ItRscYy_pjwqShrEKE5okIr_CzYh8zwSsiefP8Sb1XvEppixAWUtCXxR6tRS5rtF9srryNwXjdlxb6vnTaTiF6SKXRCdoyjKXzvR5gnMK8bNoJotdH5S3oNKWjUo9t6eax86-LF073Cd7crwfF90_n384uqsvrz5uz08vK8kZMVV0zrIkBwTAQJJEASoVFCEmLqTQt55ZggymnXDPjjHDEUtEiVrPWNIjSg2Kz022D3qqb6Acdb1XQXt1thNgpHSdve1CES8GIcJhbw7hsjQSKwDU1IRiE5FnrZKd1M5sBWptfGXW_El2fjP6H6sIv1UjJs3gW-HAvEMPPGdKkBp8WI_UI2S9FhMCUYtYs6Pt_0G2Y45itWighJGtY_Uh1Oj_Ajy7ke-0iqk4F5URkiGTq-D9UHi0M3oYR8p_BuuFw1ZCZCX5PnZ5TUpuvX9Ys2bE5GClFcA9-YKSW4Kld8FQOnroLnsK56d1TJx9a_iaN_gGFJc9R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777784946</pqid></control><display><type>article</type><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ding, Qiang ; Ye, Chao</creator><creatorcontrib>Ding, Qiang ; Ye, Chao</creatorcontrib><description>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-023-02025-1</identifier><identifier>PMID: 36717860</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Antibiotics ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biological products ; Biology ; Biosensors ; Biotechnology ; Biotechnology - methods ; By products ; Candida - genetics ; Cell division ; Cellular tolerance ; Chemicals ; Circuits ; DNA biosynthesis ; DNA synthesis ; E coli ; Enzymes ; Factories ; Fermentation ; Filamentous bacteria ; Filamentous microorganisms ; Fungi ; Fungi - genetics ; Fungi - metabolism ; Gene expression ; Genetic engineering ; Genome editing ; Genomes ; Genomics ; Industrial applications ; Industrial engineering ; Manufacturing engineering ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Microbial cell factories ; Microorganisms ; Mutagenesis ; Natural products ; Oxytetracycline ; Permeability ; Physiological aspects ; Proteins ; Review ; Screening ; Spinosad ; Strains (organisms) ; Synthetic Biology - methods ; Yeast ; Yeast fungi ; Yeasts ; Yeasts - metabolism</subject><ispartof>Microbial cell factories, 2023-01, Vol.22 (1), p.20-20, Article 20</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</citedby><cites>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777784946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36717860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Ye, Chao</creatorcontrib><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</description><subject>Analysis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biological products</subject><subject>Biology</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>By products</subject><subject>Candida - genetics</subject><subject>Cell division</subject><subject>Cellular tolerance</subject><subject>Chemicals</subject><subject>Circuits</subject><subject>DNA biosynthesis</subject><subject>DNA synthesis</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Factories</subject><subject>Fermentation</subject><subject>Filamentous bacteria</subject><subject>Filamentous microorganisms</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Industrial applications</subject><subject>Industrial engineering</subject><subject>Manufacturing engineering</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Microbial cell factories</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Natural products</subject><subject>Oxytetracycline</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Review</subject><subject>Screening</subject><subject>Spinosad</subject><subject>Strains (organisms)</subject><subject>Synthetic Biology - methods</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><subject>Yeasts - metabolism</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1r1jAYhosobk7_gAdS8MTBOvPZpCeDMaZ7YWPgx3FI0ic1L20zk1bcvzfdO7dVJIQ8JNdzh9y5i-ItRscYy_pjwqShrEKE5okIr_CzYh8zwSsiefP8Sb1XvEppixAWUtCXxR6tRS5rtF9srryNwXjdlxb6vnTaTiF6SKXRCdoyjKXzvR5gnMK8bNoJotdH5S3oNKWjUo9t6eax86-LF073Cd7crwfF90_n384uqsvrz5uz08vK8kZMVV0zrIkBwTAQJJEASoVFCEmLqTQt55ZggymnXDPjjHDEUtEiVrPWNIjSg2Kz022D3qqb6Acdb1XQXt1thNgpHSdve1CES8GIcJhbw7hsjQSKwDU1IRiE5FnrZKd1M5sBWptfGXW_El2fjP6H6sIv1UjJs3gW-HAvEMPPGdKkBp8WI_UI2S9FhMCUYtYs6Pt_0G2Y45itWighJGtY_Uh1Oj_Ajy7ke-0iqk4F5URkiGTq-D9UHi0M3oYR8p_BuuFw1ZCZCX5PnZ5TUpuvX9Ys2bE5GClFcA9-YKSW4Kld8FQOnroLnsK56d1TJx9a_iaN_gGFJc9R</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Ding, Qiang</creator><creator>Ye, Chao</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230130</creationdate><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><author>Ding, Qiang ; Ye, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biological products</topic><topic>Biology</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>By products</topic><topic>Candida - genetics</topic><topic>Cell division</topic><topic>Cellular tolerance</topic><topic>Chemicals</topic><topic>Circuits</topic><topic>DNA biosynthesis</topic><topic>DNA synthesis</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Factories</topic><topic>Fermentation</topic><topic>Filamentous bacteria</topic><topic>Filamentous microorganisms</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Industrial applications</topic><topic>Industrial engineering</topic><topic>Manufacturing engineering</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Microbial cell factories</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Natural products</topic><topic>Oxytetracycline</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Review</topic><topic>Screening</topic><topic>Spinosad</topic><topic>Strains (organisms)</topic><topic>Synthetic Biology - methods</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Ye, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qiang</au><au>Ye, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36717860</pmid><doi>10.1186/s12934-023-02025-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2023-01, Vol.22 (1), p.20-20, Article 20
issn 1475-2859
1475-2859
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2587427f15cb458db8e30ef96221e785
source Publicly Available Content Database; PubMed Central
subjects Analysis
Antibiotics
Bacteria
Bacteria - genetics
Bacteria - metabolism
Biological products
Biology
Biosensors
Biotechnology
Biotechnology - methods
By products
Candida - genetics
Cell division
Cellular tolerance
Chemicals
Circuits
DNA biosynthesis
DNA synthesis
E coli
Enzymes
Factories
Fermentation
Filamentous bacteria
Filamentous microorganisms
Fungi
Fungi - genetics
Fungi - metabolism
Gene expression
Genetic engineering
Genome editing
Genomes
Genomics
Industrial applications
Industrial engineering
Manufacturing engineering
Metabolic engineering
Metabolic Engineering - methods
Metabolism
Microbial cell factories
Microorganisms
Mutagenesis
Natural products
Oxytetracycline
Permeability
Physiological aspects
Proteins
Review
Screening
Spinosad
Strains (organisms)
Synthetic Biology - methods
Yeast
Yeast fungi
Yeasts
Yeasts - metabolism
title Microbial cell factories based on filamentous bacteria, yeasts, and fungi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20cell%20factories%20based%20on%20filamentous%20bacteria,%20yeasts,%20and%20fungi&rft.jtitle=Microbial%20cell%20factories&rft.au=Ding,%20Qiang&rft.date=2023-01-30&rft.volume=22&rft.issue=1&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-023-02025-1&rft_dat=%3Cgale_doaj_%3EA735279462%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777784946&rft_id=info:pmid/36717860&rft_galeid=A735279462&rfr_iscdi=true