Loading…
Microbial cell factories based on filamentous bacteria, yeasts, and fungi
Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major c...
Saved in:
Published in: | Microbial cell factories 2023-01, Vol.22 (1), p.20-20, Article 20 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 20 |
container_title | Microbial cell factories |
container_volume | 22 |
creator | Ding, Qiang Ye, Chao |
description | Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved.
As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains.
In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi. |
doi_str_mv | 10.1186/s12934-023-02025-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2587427f15cb458db8e30ef96221e785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735279462</galeid><doaj_id>oai_doaj_org_article_2587427f15cb458db8e30ef96221e785</doaj_id><sourcerecordid>A735279462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</originalsourceid><addsrcrecordid>eNptkl1r1jAYhosobk7_gAdS8MTBOvPZpCeDMaZ7YWPgx3FI0ic1L20zk1bcvzfdO7dVJIQ8JNdzh9y5i-ItRscYy_pjwqShrEKE5okIr_CzYh8zwSsiefP8Sb1XvEppixAWUtCXxR6tRS5rtF9srryNwXjdlxb6vnTaTiF6SKXRCdoyjKXzvR5gnMK8bNoJotdH5S3oNKWjUo9t6eax86-LF073Cd7crwfF90_n384uqsvrz5uz08vK8kZMVV0zrIkBwTAQJJEASoVFCEmLqTQt55ZggymnXDPjjHDEUtEiVrPWNIjSg2Kz022D3qqb6Acdb1XQXt1thNgpHSdve1CES8GIcJhbw7hsjQSKwDU1IRiE5FnrZKd1M5sBWptfGXW_El2fjP6H6sIv1UjJs3gW-HAvEMPPGdKkBp8WI_UI2S9FhMCUYtYs6Pt_0G2Y45itWighJGtY_Uh1Oj_Ajy7ke-0iqk4F5URkiGTq-D9UHi0M3oYR8p_BuuFw1ZCZCX5PnZ5TUpuvX9Ys2bE5GClFcA9-YKSW4Kld8FQOnroLnsK56d1TJx9a_iaN_gGFJc9R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777784946</pqid></control><display><type>article</type><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ding, Qiang ; Ye, Chao</creator><creatorcontrib>Ding, Qiang ; Ye, Chao</creatorcontrib><description>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved.
As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains.
In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-023-02025-1</identifier><identifier>PMID: 36717860</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Antibiotics ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biological products ; Biology ; Biosensors ; Biotechnology ; Biotechnology - methods ; By products ; Candida - genetics ; Cell division ; Cellular tolerance ; Chemicals ; Circuits ; DNA biosynthesis ; DNA synthesis ; E coli ; Enzymes ; Factories ; Fermentation ; Filamentous bacteria ; Filamentous microorganisms ; Fungi ; Fungi - genetics ; Fungi - metabolism ; Gene expression ; Genetic engineering ; Genome editing ; Genomes ; Genomics ; Industrial applications ; Industrial engineering ; Manufacturing engineering ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Microbial cell factories ; Microorganisms ; Mutagenesis ; Natural products ; Oxytetracycline ; Permeability ; Physiological aspects ; Proteins ; Review ; Screening ; Spinosad ; Strains (organisms) ; Synthetic Biology - methods ; Yeast ; Yeast fungi ; Yeasts ; Yeasts - metabolism</subject><ispartof>Microbial cell factories, 2023-01, Vol.22 (1), p.20-20, Article 20</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</citedby><cites>FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777784946?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36717860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Ye, Chao</creatorcontrib><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved.
As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains.
In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</description><subject>Analysis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biological products</subject><subject>Biology</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>By products</subject><subject>Candida - genetics</subject><subject>Cell division</subject><subject>Cellular tolerance</subject><subject>Chemicals</subject><subject>Circuits</subject><subject>DNA biosynthesis</subject><subject>DNA synthesis</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Factories</subject><subject>Fermentation</subject><subject>Filamentous bacteria</subject><subject>Filamentous microorganisms</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Industrial applications</subject><subject>Industrial engineering</subject><subject>Manufacturing engineering</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Microbial cell factories</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Natural products</subject><subject>Oxytetracycline</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Review</subject><subject>Screening</subject><subject>Spinosad</subject><subject>Strains (organisms)</subject><subject>Synthetic Biology - methods</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><subject>Yeasts - metabolism</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1r1jAYhosobk7_gAdS8MTBOvPZpCeDMaZ7YWPgx3FI0ic1L20zk1bcvzfdO7dVJIQ8JNdzh9y5i-ItRscYy_pjwqShrEKE5okIr_CzYh8zwSsiefP8Sb1XvEppixAWUtCXxR6tRS5rtF9srryNwXjdlxb6vnTaTiF6SKXRCdoyjKXzvR5gnMK8bNoJotdH5S3oNKWjUo9t6eax86-LF073Cd7crwfF90_n384uqsvrz5uz08vK8kZMVV0zrIkBwTAQJJEASoVFCEmLqTQt55ZggymnXDPjjHDEUtEiVrPWNIjSg2Kz022D3qqb6Acdb1XQXt1thNgpHSdve1CES8GIcJhbw7hsjQSKwDU1IRiE5FnrZKd1M5sBWptfGXW_El2fjP6H6sIv1UjJs3gW-HAvEMPPGdKkBp8WI_UI2S9FhMCUYtYs6Pt_0G2Y45itWighJGtY_Uh1Oj_Ajy7ke-0iqk4F5URkiGTq-D9UHi0M3oYR8p_BuuFw1ZCZCX5PnZ5TUpuvX9Ys2bE5GClFcA9-YKSW4Kld8FQOnroLnsK56d1TJx9a_iaN_gGFJc9R</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Ding, Qiang</creator><creator>Ye, Chao</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230130</creationdate><title>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</title><author>Ding, Qiang ; Ye, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biological products</topic><topic>Biology</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>By products</topic><topic>Candida - genetics</topic><topic>Cell division</topic><topic>Cellular tolerance</topic><topic>Chemicals</topic><topic>Circuits</topic><topic>DNA biosynthesis</topic><topic>DNA synthesis</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Factories</topic><topic>Fermentation</topic><topic>Filamentous bacteria</topic><topic>Filamentous microorganisms</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Industrial applications</topic><topic>Industrial engineering</topic><topic>Manufacturing engineering</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Microbial cell factories</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Natural products</topic><topic>Oxytetracycline</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Review</topic><topic>Screening</topic><topic>Spinosad</topic><topic>Strains (organisms)</topic><topic>Synthetic Biology - methods</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qiang</creatorcontrib><creatorcontrib>Ye, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qiang</au><au>Ye, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial cell factories based on filamentous bacteria, yeasts, and fungi</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2023-01-30</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved.
As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains.
In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36717860</pmid><doi>10.1186/s12934-023-02025-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2859 |
ispartof | Microbial cell factories, 2023-01, Vol.22 (1), p.20-20, Article 20 |
issn | 1475-2859 1475-2859 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2587427f15cb458db8e30ef96221e785 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Antibiotics Bacteria Bacteria - genetics Bacteria - metabolism Biological products Biology Biosensors Biotechnology Biotechnology - methods By products Candida - genetics Cell division Cellular tolerance Chemicals Circuits DNA biosynthesis DNA synthesis E coli Enzymes Factories Fermentation Filamentous bacteria Filamentous microorganisms Fungi Fungi - genetics Fungi - metabolism Gene expression Genetic engineering Genome editing Genomes Genomics Industrial applications Industrial engineering Manufacturing engineering Metabolic engineering Metabolic Engineering - methods Metabolism Microbial cell factories Microorganisms Mutagenesis Natural products Oxytetracycline Permeability Physiological aspects Proteins Review Screening Spinosad Strains (organisms) Synthetic Biology - methods Yeast Yeast fungi Yeasts Yeasts - metabolism |
title | Microbial cell factories based on filamentous bacteria, yeasts, and fungi |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20cell%20factories%20based%20on%20filamentous%20bacteria,%20yeasts,%20and%20fungi&rft.jtitle=Microbial%20cell%20factories&rft.au=Ding,%20Qiang&rft.date=2023-01-30&rft.volume=22&rft.issue=1&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-023-02025-1&rft_dat=%3Cgale_doaj_%3EA735279462%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-6641a2be741e20807e337c0008c138bd55c21b13535a4bfb7f2c37d0464db9033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777784946&rft_id=info:pmid/36717860&rft_galeid=A735279462&rfr_iscdi=true |