Loading…

Complementary mechanisms create direction selectivity in the fly

How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred directio...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2016-08, Vol.5
Main Authors: Haag, Juergen, Arenz, Alexander, Serbe, Etienne, Gabbiani, Fabrizio, Borst, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43
cites cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 5
creator Haag, Juergen
Arenz, Alexander
Serbe, Etienne
Gabbiani, Fabrizio
Borst, Alexander
description How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.
doi_str_mv 10.7554/elife.17421
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ab690db3084419a832243a252332ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473191455</galeid><doaj_id>oai_doaj_org_article_25ab690db3084419a832243a252332ce</doaj_id><sourcerecordid>A473191455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</originalsourceid><addsrcrecordid>eNptkkuL2zAQgE1p6S7bPfVeDL20lKR6WvKl7BL6CAQKfUBvQpbHiYJtpZK8NP--k812uymVER6kbz57himK55TMlZTiLfS-gzlVgtFHxTkjksyIFj8eP4jPisuUtgSXElrT-mlxxpQkDNPPi6tFGHY9DDBmG_flAG5jR5-GVLoINkPZ-ggu-zCWCfpDdOPzvvRjmTdQdv3-WfGks32Cy7v3RfH9w_tvi0-z1eePy8X1auYqwfKsli00BHdDmOKqUcAl0Z0mFei21ZXQLSjS8UZVEm8c0bzRtdVVRRporeAXxfLobYPdml30A_6vCdab24MQ18bG7F0PhknbVDVpG47lC4oWzpjglknGOXOArndH125qBmgdFh9tfyI9vRn9xqzDjRG10pIxFLy6E8Twc4KUzeCTg763I4QpGaopkbKqqUT05T_oNkxxxFYZWkvOdc1p_ZdaWyzAj13A77qD1FwLhQQV8uCa_4fCp4XBuzBC5_H8JOH1SQIyGX7ltZ1SMsuvX07ZN0fWxZBShO6-H5SYw6wZWOGsmdtZQ_rFwxbes38mi_8GR9nMbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953389319</pqid></control><display><type>article</type><title>Complementary mechanisms create direction selectivity in the fly</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</creator><creatorcontrib>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</creatorcontrib><description>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.17421</identifier><identifier>PMID: 27502554</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animals ; computer model ; Data analysis ; Drosophila ; Drosophila - physiology ; Light ; Locomotion ; Motion detection ; motion vision ; Neural circuitry ; Neurogenetics ; Neurons ; Neurons - physiology ; Neuroscience ; Neurosciences ; Optic lobe ; Optic Lobe, Nonmammalian - physiology ; Optics ; Photic Stimulation ; Photoreceptors ; Physiological aspects ; Psychomotor Performance ; Receptive field ; Visual Pathways - physiology</subject><ispartof>eLife, 2016-08, Vol.5</ispartof><rights>COPYRIGHT 2016 eLife Science Publications, Ltd.</rights><rights>2016, Haag et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016, Haag et al 2016 Haag et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</citedby><cites>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953389319/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953389319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27502554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Arenz, Alexander</creatorcontrib><creatorcontrib>Serbe, Etienne</creatorcontrib><creatorcontrib>Gabbiani, Fabrizio</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><title>Complementary mechanisms create direction selectivity in the fly</title><title>eLife</title><addtitle>Elife</addtitle><description>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</description><subject>Animals</subject><subject>computer model</subject><subject>Data analysis</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Light</subject><subject>Locomotion</subject><subject>Motion detection</subject><subject>motion vision</subject><subject>Neural circuitry</subject><subject>Neurogenetics</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Optic lobe</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Optics</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Psychomotor Performance</subject><subject>Receptive field</subject><subject>Visual Pathways - physiology</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuL2zAQgE1p6S7bPfVeDL20lKR6WvKl7BL6CAQKfUBvQpbHiYJtpZK8NP--k812uymVER6kbz57himK55TMlZTiLfS-gzlVgtFHxTkjksyIFj8eP4jPisuUtgSXElrT-mlxxpQkDNPPi6tFGHY9DDBmG_flAG5jR5-GVLoINkPZ-ggu-zCWCfpDdOPzvvRjmTdQdv3-WfGks32Cy7v3RfH9w_tvi0-z1eePy8X1auYqwfKsli00BHdDmOKqUcAl0Z0mFei21ZXQLSjS8UZVEm8c0bzRtdVVRRporeAXxfLobYPdml30A_6vCdab24MQ18bG7F0PhknbVDVpG47lC4oWzpjglknGOXOArndH125qBmgdFh9tfyI9vRn9xqzDjRG10pIxFLy6E8Twc4KUzeCTg763I4QpGaopkbKqqUT05T_oNkxxxFYZWkvOdc1p_ZdaWyzAj13A77qD1FwLhQQV8uCa_4fCp4XBuzBC5_H8JOH1SQIyGX7ltZ1SMsuvX07ZN0fWxZBShO6-H5SYw6wZWOGsmdtZQ_rFwxbes38mi_8GR9nMbg</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Haag, Juergen</creator><creator>Arenz, Alexander</creator><creator>Serbe, Etienne</creator><creator>Gabbiani, Fabrizio</creator><creator>Borst, Alexander</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160809</creationdate><title>Complementary mechanisms create direction selectivity in the fly</title><author>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>computer model</topic><topic>Data analysis</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Light</topic><topic>Locomotion</topic><topic>Motion detection</topic><topic>motion vision</topic><topic>Neural circuitry</topic><topic>Neurogenetics</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Optic lobe</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Optics</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Psychomotor Performance</topic><topic>Receptive field</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Arenz, Alexander</creatorcontrib><creatorcontrib>Serbe, Etienne</creatorcontrib><creatorcontrib>Gabbiani, Fabrizio</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haag, Juergen</au><au>Arenz, Alexander</au><au>Serbe, Etienne</au><au>Gabbiani, Fabrizio</au><au>Borst, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary mechanisms create direction selectivity in the fly</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>5</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>27502554</pmid><doi>10.7554/elife.17421</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2016-08, Vol.5
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_25ab690db3084419a832243a252332ce
source PubMed Central Free; Publicly Available Content Database
subjects Animals
computer model
Data analysis
Drosophila
Drosophila - physiology
Light
Locomotion
Motion detection
motion vision
Neural circuitry
Neurogenetics
Neurons
Neurons - physiology
Neuroscience
Neurosciences
Optic lobe
Optic Lobe, Nonmammalian - physiology
Optics
Photic Stimulation
Photoreceptors
Physiological aspects
Psychomotor Performance
Receptive field
Visual Pathways - physiology
title Complementary mechanisms create direction selectivity in the fly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20mechanisms%20create%20direction%20selectivity%20in%20the%20fly&rft.jtitle=eLife&rft.au=Haag,%20Juergen&rft.date=2016-08-09&rft.volume=5&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.17421&rft_dat=%3Cgale_doaj_%3EA473191455%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953389319&rft_id=info:pmid/27502554&rft_galeid=A473191455&rfr_iscdi=true