Loading…
Complementary mechanisms create direction selectivity in the fly
How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred directio...
Saved in:
Published in: | eLife 2016-08, Vol.5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43 |
---|---|
cites | cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 5 |
creator | Haag, Juergen Arenz, Alexander Serbe, Etienne Gabbiani, Fabrizio Borst, Alexander |
description | How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. |
doi_str_mv | 10.7554/elife.17421 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ab690db3084419a832243a252332ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473191455</galeid><doaj_id>oai_doaj_org_article_25ab690db3084419a832243a252332ce</doaj_id><sourcerecordid>A473191455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</originalsourceid><addsrcrecordid>eNptkkuL2zAQgE1p6S7bPfVeDL20lKR6WvKl7BL6CAQKfUBvQpbHiYJtpZK8NP--k812uymVER6kbz57himK55TMlZTiLfS-gzlVgtFHxTkjksyIFj8eP4jPisuUtgSXElrT-mlxxpQkDNPPi6tFGHY9DDBmG_flAG5jR5-GVLoINkPZ-ggu-zCWCfpDdOPzvvRjmTdQdv3-WfGks32Cy7v3RfH9w_tvi0-z1eePy8X1auYqwfKsli00BHdDmOKqUcAl0Z0mFei21ZXQLSjS8UZVEm8c0bzRtdVVRRporeAXxfLobYPdml30A_6vCdab24MQ18bG7F0PhknbVDVpG47lC4oWzpjglknGOXOArndH125qBmgdFh9tfyI9vRn9xqzDjRG10pIxFLy6E8Twc4KUzeCTg763I4QpGaopkbKqqUT05T_oNkxxxFYZWkvOdc1p_ZdaWyzAj13A77qD1FwLhQQV8uCa_4fCp4XBuzBC5_H8JOH1SQIyGX7ltZ1SMsuvX07ZN0fWxZBShO6-H5SYw6wZWOGsmdtZQ_rFwxbes38mi_8GR9nMbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953389319</pqid></control><display><type>article</type><title>Complementary mechanisms create direction selectivity in the fly</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</creator><creatorcontrib>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</creatorcontrib><description>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.17421</identifier><identifier>PMID: 27502554</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animals ; computer model ; Data analysis ; Drosophila ; Drosophila - physiology ; Light ; Locomotion ; Motion detection ; motion vision ; Neural circuitry ; Neurogenetics ; Neurons ; Neurons - physiology ; Neuroscience ; Neurosciences ; Optic lobe ; Optic Lobe, Nonmammalian - physiology ; Optics ; Photic Stimulation ; Photoreceptors ; Physiological aspects ; Psychomotor Performance ; Receptive field ; Visual Pathways - physiology</subject><ispartof>eLife, 2016-08, Vol.5</ispartof><rights>COPYRIGHT 2016 eLife Science Publications, Ltd.</rights><rights>2016, Haag et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016, Haag et al 2016 Haag et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</citedby><cites>FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1953389319/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1953389319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27502554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Arenz, Alexander</creatorcontrib><creatorcontrib>Serbe, Etienne</creatorcontrib><creatorcontrib>Gabbiani, Fabrizio</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><title>Complementary mechanisms create direction selectivity in the fly</title><title>eLife</title><addtitle>Elife</addtitle><description>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</description><subject>Animals</subject><subject>computer model</subject><subject>Data analysis</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Light</subject><subject>Locomotion</subject><subject>Motion detection</subject><subject>motion vision</subject><subject>Neural circuitry</subject><subject>Neurogenetics</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Optic lobe</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Optics</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Physiological aspects</subject><subject>Psychomotor Performance</subject><subject>Receptive field</subject><subject>Visual Pathways - physiology</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuL2zAQgE1p6S7bPfVeDL20lKR6WvKl7BL6CAQKfUBvQpbHiYJtpZK8NP--k812uymVER6kbz57himK55TMlZTiLfS-gzlVgtFHxTkjksyIFj8eP4jPisuUtgSXElrT-mlxxpQkDNPPi6tFGHY9DDBmG_flAG5jR5-GVLoINkPZ-ggu-zCWCfpDdOPzvvRjmTdQdv3-WfGks32Cy7v3RfH9w_tvi0-z1eePy8X1auYqwfKsli00BHdDmOKqUcAl0Z0mFei21ZXQLSjS8UZVEm8c0bzRtdVVRRporeAXxfLobYPdml30A_6vCdab24MQ18bG7F0PhknbVDVpG47lC4oWzpjglknGOXOArndH125qBmgdFh9tfyI9vRn9xqzDjRG10pIxFLy6E8Twc4KUzeCTg763I4QpGaopkbKqqUT05T_oNkxxxFYZWkvOdc1p_ZdaWyzAj13A77qD1FwLhQQV8uCa_4fCp4XBuzBC5_H8JOH1SQIyGX7ltZ1SMsuvX07ZN0fWxZBShO6-H5SYw6wZWOGsmdtZQ_rFwxbes38mi_8GR9nMbg</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Haag, Juergen</creator><creator>Arenz, Alexander</creator><creator>Serbe, Etienne</creator><creator>Gabbiani, Fabrizio</creator><creator>Borst, Alexander</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160809</creationdate><title>Complementary mechanisms create direction selectivity in the fly</title><author>Haag, Juergen ; Arenz, Alexander ; Serbe, Etienne ; Gabbiani, Fabrizio ; Borst, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>computer model</topic><topic>Data analysis</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Light</topic><topic>Locomotion</topic><topic>Motion detection</topic><topic>motion vision</topic><topic>Neural circuitry</topic><topic>Neurogenetics</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Optic lobe</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Optics</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Physiological aspects</topic><topic>Psychomotor Performance</topic><topic>Receptive field</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Arenz, Alexander</creatorcontrib><creatorcontrib>Serbe, Etienne</creatorcontrib><creatorcontrib>Gabbiani, Fabrizio</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haag, Juergen</au><au>Arenz, Alexander</au><au>Serbe, Etienne</au><au>Gabbiani, Fabrizio</au><au>Borst, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary mechanisms create direction selectivity in the fly</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>5</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>27502554</pmid><doi>10.7554/elife.17421</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2016-08, Vol.5 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_25ab690db3084419a832243a252332ce |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Animals computer model Data analysis Drosophila Drosophila - physiology Light Locomotion Motion detection motion vision Neural circuitry Neurogenetics Neurons Neurons - physiology Neuroscience Neurosciences Optic lobe Optic Lobe, Nonmammalian - physiology Optics Photic Stimulation Photoreceptors Physiological aspects Psychomotor Performance Receptive field Visual Pathways - physiology |
title | Complementary mechanisms create direction selectivity in the fly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20mechanisms%20create%20direction%20selectivity%20in%20the%20fly&rft.jtitle=eLife&rft.au=Haag,%20Juergen&rft.date=2016-08-09&rft.volume=5&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.17421&rft_dat=%3Cgale_doaj_%3EA473191455%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-95deb0debb02737b7e3508f806e8dd8648de70f3b765350c083b89a8660beda43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1953389319&rft_id=info:pmid/27502554&rft_galeid=A473191455&rfr_iscdi=true |