Loading…

Identifying optimal photovoltaic technologies for underwater applications

Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tan...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2022-07, Vol.25 (7), p.104531-104531, Article 104531
Main Authors: Röhr, Jason A., Sartor, B. Edward, Duenow, Joel N., Qin, Zilun, Meng, Juan, Lipton, Jason, Maclean, Stephen A., Römer, Udo, Nielsen, Michael P., Zhao, Suling, Kong, Jaemin, Reese, Matthew O., Steiner, Myles A., Ekins-Daukes, N.J., Taylor, André D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3
cites cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3
container_end_page 104531
container_issue 7
container_start_page 104531
container_title iScience
container_volume 25
creator Röhr, Jason A.
Sartor, B. Edward
Duenow, Joel N.
Qin, Zilun
Meng, Juan
Lipton, Jason
Maclean, Stephen A.
Römer, Udo
Nielsen, Michael P.
Zhao, Suling
Kong, Jaemin
Reese, Matthew O.
Steiner, Myles A.
Ekins-Daukes, N.J.
Taylor, André D.
description Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%. [Display omitted] •A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54% Applied sciences; Engineering; Water resources engineering
doi_str_mv 10.1016/j.isci.2022.104531
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004222008021</els_id><doaj_id>oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf</doaj_id><sourcerecordid>2685037996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</originalsourceid><addsrcrecordid>eNp9UU2LFDEUbERxl3X_gKfGk5cZ8500iCCLHwMLXvQc0snLTIaepE0yI_vvTduLuBfhQcJLVaWo6rrXGG0xwuLdcRuKDVuCCGkLxil-1l0TroYNQow8_-d-1d2WckQIkTZsEC-7K8qlYnLg191u5yDW4B9C3PdpruFkpn4-pJouaaom2L6CPcQ0pX2A0vuU-3N0kH-ZCrk38zwFa2pIsbzqXngzFbh9PG-6H58_fb_7urn_9mV39_F-YznhdeMkk2IcBTHUIoe9GAFRR4DBiBXx1HPgI1OGEeZG6YlyxONxRERwqoSx9KbbrboumaOec3OcH3QyQf9ZpLzXJtdgJ9CE2zYcM4sxowqPCjPgXhpBlTTON60Pq9Z8Hk_gbIsim-mJ6NOXGA56ny56IAzJgTWBN6tAKjXoVsiSlk0xgq0aKykbqoHePv6S088zlKpPrTuYJhMhnYsmQnFE5TCIBiUr1OZUSgb_1wtGeuldH_XSu15612vvjfR-JUGL_RIgL0YgWnAhLz5cCv-j_wZsEbXp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685037996</pqid></control><display><type>article</type><title>Identifying optimal photovoltaic technologies for underwater applications</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D.</creator><creatorcontrib>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths &gt;2 m, with GaInP cells operating with underwater efficiencies approaching 54%. [Display omitted] •A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54% Applied sciences; Engineering; Water resources engineering</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2022.104531</identifier><identifier>PMID: 35784795</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Applied sciences ; Engineering ; SOLAR ENERGY ; Water resources engineering</subject><ispartof>iScience, 2022-07, Vol.25 (7), p.104531-104531, Article 104531</ispartof><rights>2022 The Authors</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</citedby><cites>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004222008021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Röhr, Jason A.</creatorcontrib><creatorcontrib>Sartor, B. Edward</creatorcontrib><creatorcontrib>Duenow, Joel N.</creatorcontrib><creatorcontrib>Qin, Zilun</creatorcontrib><creatorcontrib>Meng, Juan</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Maclean, Stephen A.</creatorcontrib><creatorcontrib>Römer, Udo</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Zhao, Suling</creatorcontrib><creatorcontrib>Kong, Jaemin</creatorcontrib><creatorcontrib>Reese, Matthew O.</creatorcontrib><creatorcontrib>Steiner, Myles A.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.J.</creatorcontrib><creatorcontrib>Taylor, André D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Identifying optimal photovoltaic technologies for underwater applications</title><title>iScience</title><description>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths &gt;2 m, with GaInP cells operating with underwater efficiencies approaching 54%. [Display omitted] •A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54% Applied sciences; Engineering; Water resources engineering</description><subject>Applied sciences</subject><subject>Engineering</subject><subject>SOLAR ENERGY</subject><subject>Water resources engineering</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU2LFDEUbERxl3X_gKfGk5cZ8500iCCLHwMLXvQc0snLTIaepE0yI_vvTduLuBfhQcJLVaWo6rrXGG0xwuLdcRuKDVuCCGkLxil-1l0TroYNQow8_-d-1d2WckQIkTZsEC-7K8qlYnLg191u5yDW4B9C3PdpruFkpn4-pJouaaom2L6CPcQ0pX2A0vuU-3N0kH-ZCrk38zwFa2pIsbzqXngzFbh9PG-6H58_fb_7urn_9mV39_F-YznhdeMkk2IcBTHUIoe9GAFRR4DBiBXx1HPgI1OGEeZG6YlyxONxRERwqoSx9KbbrboumaOec3OcH3QyQf9ZpLzXJtdgJ9CE2zYcM4sxowqPCjPgXhpBlTTON60Pq9Z8Hk_gbIsim-mJ6NOXGA56ny56IAzJgTWBN6tAKjXoVsiSlk0xgq0aKykbqoHePv6S088zlKpPrTuYJhMhnYsmQnFE5TCIBiUr1OZUSgb_1wtGeuldH_XSu15612vvjfR-JUGL_RIgL0YgWnAhLz5cCv-j_wZsEbXp</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Röhr, Jason A.</creator><creator>Sartor, B. Edward</creator><creator>Duenow, Joel N.</creator><creator>Qin, Zilun</creator><creator>Meng, Juan</creator><creator>Lipton, Jason</creator><creator>Maclean, Stephen A.</creator><creator>Römer, Udo</creator><creator>Nielsen, Michael P.</creator><creator>Zhao, Suling</creator><creator>Kong, Jaemin</creator><creator>Reese, Matthew O.</creator><creator>Steiner, Myles A.</creator><creator>Ekins-Daukes, N.J.</creator><creator>Taylor, André D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220715</creationdate><title>Identifying optimal photovoltaic technologies for underwater applications</title><author>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied sciences</topic><topic>Engineering</topic><topic>SOLAR ENERGY</topic><topic>Water resources engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röhr, Jason A.</creatorcontrib><creatorcontrib>Sartor, B. Edward</creatorcontrib><creatorcontrib>Duenow, Joel N.</creatorcontrib><creatorcontrib>Qin, Zilun</creatorcontrib><creatorcontrib>Meng, Juan</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Maclean, Stephen A.</creatorcontrib><creatorcontrib>Römer, Udo</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Zhao, Suling</creatorcontrib><creatorcontrib>Kong, Jaemin</creatorcontrib><creatorcontrib>Reese, Matthew O.</creatorcontrib><creatorcontrib>Steiner, Myles A.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.J.</creatorcontrib><creatorcontrib>Taylor, André D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röhr, Jason A.</au><au>Sartor, B. Edward</au><au>Duenow, Joel N.</au><au>Qin, Zilun</au><au>Meng, Juan</au><au>Lipton, Jason</au><au>Maclean, Stephen A.</au><au>Römer, Udo</au><au>Nielsen, Michael P.</au><au>Zhao, Suling</au><au>Kong, Jaemin</au><au>Reese, Matthew O.</au><au>Steiner, Myles A.</au><au>Ekins-Daukes, N.J.</au><au>Taylor, André D.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying optimal photovoltaic technologies for underwater applications</atitle><jtitle>iScience</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>25</volume><issue>7</issue><spage>104531</spage><epage>104531</epage><pages>104531-104531</pages><artnum>104531</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths &gt;2 m, with GaInP cells operating with underwater efficiencies approaching 54%. [Display omitted] •A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54% Applied sciences; Engineering; Water resources engineering</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35784795</pmid><doi>10.1016/j.isci.2022.104531</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-0042
ispartof iScience, 2022-07, Vol.25 (7), p.104531-104531, Article 104531
issn 2589-0042
2589-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf
source ScienceDirect Journals; PubMed Central
subjects Applied sciences
Engineering
SOLAR ENERGY
Water resources engineering
title Identifying optimal photovoltaic technologies for underwater applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20optimal%20photovoltaic%20technologies%20for%20underwater%20applications&rft.jtitle=iScience&rft.au=R%C3%B6hr,%20Jason%20A.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-07-15&rft.volume=25&rft.issue=7&rft.spage=104531&rft.epage=104531&rft.pages=104531-104531&rft.artnum=104531&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2022.104531&rft_dat=%3Cproquest_doaj_%3E2685037996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685037996&rft_id=info:pmid/35784795&rfr_iscdi=true