Loading…
Identifying optimal photovoltaic technologies for underwater applications
Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tan...
Saved in:
Published in: | iScience 2022-07, Vol.25 (7), p.104531-104531, Article 104531 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3 |
container_end_page | 104531 |
container_issue | 7 |
container_start_page | 104531 |
container_title | iScience |
container_volume | 25 |
creator | Röhr, Jason A. Sartor, B. Edward Duenow, Joel N. Qin, Zilun Meng, Juan Lipton, Jason Maclean, Stephen A. Römer, Udo Nielsen, Michael P. Zhao, Suling Kong, Jaemin Reese, Matthew O. Steiner, Myles A. Ekins-Daukes, N.J. Taylor, André D. |
description | Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%.
[Display omitted]
•A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54%
Applied sciences; Engineering; Water resources engineering |
doi_str_mv | 10.1016/j.isci.2022.104531 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004222008021</els_id><doaj_id>oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf</doaj_id><sourcerecordid>2685037996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</originalsourceid><addsrcrecordid>eNp9UU2LFDEUbERxl3X_gKfGk5cZ8500iCCLHwMLXvQc0snLTIaepE0yI_vvTduLuBfhQcJLVaWo6rrXGG0xwuLdcRuKDVuCCGkLxil-1l0TroYNQow8_-d-1d2WckQIkTZsEC-7K8qlYnLg191u5yDW4B9C3PdpruFkpn4-pJouaaom2L6CPcQ0pX2A0vuU-3N0kH-ZCrk38zwFa2pIsbzqXngzFbh9PG-6H58_fb_7urn_9mV39_F-YznhdeMkk2IcBTHUIoe9GAFRR4DBiBXx1HPgI1OGEeZG6YlyxONxRERwqoSx9KbbrboumaOec3OcH3QyQf9ZpLzXJtdgJ9CE2zYcM4sxowqPCjPgXhpBlTTON60Pq9Z8Hk_gbIsim-mJ6NOXGA56ny56IAzJgTWBN6tAKjXoVsiSlk0xgq0aKykbqoHePv6S088zlKpPrTuYJhMhnYsmQnFE5TCIBiUr1OZUSgb_1wtGeuldH_XSu15612vvjfR-JUGL_RIgL0YgWnAhLz5cCv-j_wZsEbXp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685037996</pqid></control><display><type>article</type><title>Identifying optimal photovoltaic technologies for underwater applications</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D.</creator><creatorcontrib>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%.
[Display omitted]
•A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54%
Applied sciences; Engineering; Water resources engineering</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2022.104531</identifier><identifier>PMID: 35784795</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Applied sciences ; Engineering ; SOLAR ENERGY ; Water resources engineering</subject><ispartof>iScience, 2022-07, Vol.25 (7), p.104531-104531, Article 104531</ispartof><rights>2022 The Authors</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</citedby><cites>FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004222008021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Röhr, Jason A.</creatorcontrib><creatorcontrib>Sartor, B. Edward</creatorcontrib><creatorcontrib>Duenow, Joel N.</creatorcontrib><creatorcontrib>Qin, Zilun</creatorcontrib><creatorcontrib>Meng, Juan</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Maclean, Stephen A.</creatorcontrib><creatorcontrib>Römer, Udo</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Zhao, Suling</creatorcontrib><creatorcontrib>Kong, Jaemin</creatorcontrib><creatorcontrib>Reese, Matthew O.</creatorcontrib><creatorcontrib>Steiner, Myles A.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.J.</creatorcontrib><creatorcontrib>Taylor, André D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Identifying optimal photovoltaic technologies for underwater applications</title><title>iScience</title><description>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%.
[Display omitted]
•A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54%
Applied sciences; Engineering; Water resources engineering</description><subject>Applied sciences</subject><subject>Engineering</subject><subject>SOLAR ENERGY</subject><subject>Water resources engineering</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU2LFDEUbERxl3X_gKfGk5cZ8500iCCLHwMLXvQc0snLTIaepE0yI_vvTduLuBfhQcJLVaWo6rrXGG0xwuLdcRuKDVuCCGkLxil-1l0TroYNQow8_-d-1d2WckQIkTZsEC-7K8qlYnLg191u5yDW4B9C3PdpruFkpn4-pJouaaom2L6CPcQ0pX2A0vuU-3N0kH-ZCrk38zwFa2pIsbzqXngzFbh9PG-6H58_fb_7urn_9mV39_F-YznhdeMkk2IcBTHUIoe9GAFRR4DBiBXx1HPgI1OGEeZG6YlyxONxRERwqoSx9KbbrboumaOec3OcH3QyQf9ZpLzXJtdgJ9CE2zYcM4sxowqPCjPgXhpBlTTON60Pq9Z8Hk_gbIsim-mJ6NOXGA56ny56IAzJgTWBN6tAKjXoVsiSlk0xgq0aKykbqoHePv6S088zlKpPrTuYJhMhnYsmQnFE5TCIBiUr1OZUSgb_1wtGeuldH_XSu15612vvjfR-JUGL_RIgL0YgWnAhLz5cCv-j_wZsEbXp</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Röhr, Jason A.</creator><creator>Sartor, B. Edward</creator><creator>Duenow, Joel N.</creator><creator>Qin, Zilun</creator><creator>Meng, Juan</creator><creator>Lipton, Jason</creator><creator>Maclean, Stephen A.</creator><creator>Römer, Udo</creator><creator>Nielsen, Michael P.</creator><creator>Zhao, Suling</creator><creator>Kong, Jaemin</creator><creator>Reese, Matthew O.</creator><creator>Steiner, Myles A.</creator><creator>Ekins-Daukes, N.J.</creator><creator>Taylor, André D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220715</creationdate><title>Identifying optimal photovoltaic technologies for underwater applications</title><author>Röhr, Jason A. ; Sartor, B. Edward ; Duenow, Joel N. ; Qin, Zilun ; Meng, Juan ; Lipton, Jason ; Maclean, Stephen A. ; Römer, Udo ; Nielsen, Michael P. ; Zhao, Suling ; Kong, Jaemin ; Reese, Matthew O. ; Steiner, Myles A. ; Ekins-Daukes, N.J. ; Taylor, André D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied sciences</topic><topic>Engineering</topic><topic>SOLAR ENERGY</topic><topic>Water resources engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Röhr, Jason A.</creatorcontrib><creatorcontrib>Sartor, B. Edward</creatorcontrib><creatorcontrib>Duenow, Joel N.</creatorcontrib><creatorcontrib>Qin, Zilun</creatorcontrib><creatorcontrib>Meng, Juan</creatorcontrib><creatorcontrib>Lipton, Jason</creatorcontrib><creatorcontrib>Maclean, Stephen A.</creatorcontrib><creatorcontrib>Römer, Udo</creatorcontrib><creatorcontrib>Nielsen, Michael P.</creatorcontrib><creatorcontrib>Zhao, Suling</creatorcontrib><creatorcontrib>Kong, Jaemin</creatorcontrib><creatorcontrib>Reese, Matthew O.</creatorcontrib><creatorcontrib>Steiner, Myles A.</creatorcontrib><creatorcontrib>Ekins-Daukes, N.J.</creatorcontrib><creatorcontrib>Taylor, André D.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Röhr, Jason A.</au><au>Sartor, B. Edward</au><au>Duenow, Joel N.</au><au>Qin, Zilun</au><au>Meng, Juan</au><au>Lipton, Jason</au><au>Maclean, Stephen A.</au><au>Römer, Udo</au><au>Nielsen, Michael P.</au><au>Zhao, Suling</au><au>Kong, Jaemin</au><au>Reese, Matthew O.</au><au>Steiner, Myles A.</au><au>Ekins-Daukes, N.J.</au><au>Taylor, André D.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying optimal photovoltaic technologies for underwater applications</atitle><jtitle>iScience</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>25</volume><issue>7</issue><spage>104531</spage><epage>104531</epage><pages>104531-104531</pages><artnum>104531</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%.
[Display omitted]
•A bench-top characterization technique for testing underwater solar cells is presented•Underwater solar irradiance spectra at varying depths were reproduced with LEDs•GaInP solar cells outperformed Si and CdTe, with efficiencies approaching 54%
Applied sciences; Engineering; Water resources engineering</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35784795</pmid><doi>10.1016/j.isci.2022.104531</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-0042 |
ispartof | iScience, 2022-07, Vol.25 (7), p.104531-104531, Article 104531 |
issn | 2589-0042 2589-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_25c25c514c114381b814e5f7a6387adf |
source | ScienceDirect Journals; PubMed Central |
subjects | Applied sciences Engineering SOLAR ENERGY Water resources engineering |
title | Identifying optimal photovoltaic technologies for underwater applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20optimal%20photovoltaic%20technologies%20for%20underwater%20applications&rft.jtitle=iScience&rft.au=R%C3%B6hr,%20Jason%20A.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-07-15&rft.volume=25&rft.issue=7&rft.spage=104531&rft.epage=104531&rft.pages=104531-104531&rft.artnum=104531&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2022.104531&rft_dat=%3Cproquest_doaj_%3E2685037996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-d7476bb62a3c0d1f6be03d2e4eb182f3f5e5b48a424db7f28d2f1bb0265386ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685037996&rft_id=info:pmid/35784795&rfr_iscdi=true |