Loading…
Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture
To feed the ever-increasing population under changing climate scenarios, it is imperative to investigate the role of halophytes, which are equipped with special adaptation mechanisms to cope under extreme conditions of salinity. In the current review, we aimed to report newly identified bioactive se...
Saved in:
Published in: | Applied sciences 2023-01, Vol.13 (3), p.1299 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To feed the ever-increasing population under changing climate scenarios, it is imperative to investigate the role of halophytes, which are equipped with special adaptation mechanisms to cope under extreme conditions of salinity. In the current review, we aimed to report newly identified bioactive secondary metabolites that might play a role in establishing rhizosphere microbe associations, elucidate the negative impacts of salt stress, and direct the growth and yield of halophytes. A systematic approach was developed that deciphers those metabolites involved in regulating the physiological, biochemical, and molecular responses of halophytes to salt stress. The mechanism of salinity tolerance, recruitment of beneficial microbes, and signaling role of secondary metabolites were also discussed. The role of halotolerant rhizobacteria’ secondary metabolites in the physiology and growth parameters of halophytes was also discussed. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13031299 |