Loading…

Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture

To feed the ever-increasing population under changing climate scenarios, it is imperative to investigate the role of halophytes, which are equipped with special adaptation mechanisms to cope under extreme conditions of salinity. In the current review, we aimed to report newly identified bioactive se...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-01, Vol.13 (3), p.1299
Main Authors: Asadullah, Bano, Asghari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To feed the ever-increasing population under changing climate scenarios, it is imperative to investigate the role of halophytes, which are equipped with special adaptation mechanisms to cope under extreme conditions of salinity. In the current review, we aimed to report newly identified bioactive secondary metabolites that might play a role in establishing rhizosphere microbe associations, elucidate the negative impacts of salt stress, and direct the growth and yield of halophytes. A systematic approach was developed that deciphers those metabolites involved in regulating the physiological, biochemical, and molecular responses of halophytes to salt stress. The mechanism of salinity tolerance, recruitment of beneficial microbes, and signaling role of secondary metabolites were also discussed. The role of halotolerant rhizobacteria’ secondary metabolites in the physiology and growth parameters of halophytes was also discussed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13031299