Loading…
Enhancement in Some Physical Properties of (PVP: CMC) Blend by the addition of MgO
This research study explores the effects of adding MgO nanoparticles to a polymeric blend composed of 50% PVP and 50% CMC. The blend was prepared using MgO nanoparticles (0.2%, 4%, and 6%) and varying processing conditions. The structural, optical, and electrical properties of the resulting blend we...
Saved in:
Published in: | East European journal of physics 2023-06 (2), p.310-316 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research study explores the effects of adding MgO nanoparticles to a polymeric blend composed of 50% PVP and 50% CMC. The blend was prepared using MgO nanoparticles (0.2%, 4%, and 6%) and varying processing conditions. The structural, optical, and electrical properties of the resulting blend were analyzed to determine the impact of the added nanoparticles on the blend's properties. Results showed that the addition of nanoparticles significantly improved the structural, optical, and electrical properties of the polymeric blend. Specifically, the energy gap is 4.224 eV for (PVA: CMC) film and increased to 3.432 eV for (PVA: CMC-6% MgO), the light transmission and reflection properties were enhanced. Additionally, the conductivity of the blend was increased, making it suitable for various applications, including optoelectronics, sensors, and biomedical devices. Overall, this study demonstrates the potential of adding nanoparticles to polymeric blends to improve their properties and highlights the importance of optimizing processing conditions to achieve the desired properties for specific applications. |
---|---|
ISSN: | 2312-4334 2312-4539 |
DOI: | 10.26565/2312-4334-2023-2-35 |