Loading…

Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale

In this paper, a nonlinear dynamic equation with an initial value problem (IVP) on a time scale is considered. First, applying comparison results with a coupled lower solution (LS) and an upper solution (US), we improved the quasilinearization method (QLM) for the IVP. Unlike other studies, we consi...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2024-09, Vol.13 (9), p.640
Main Authors: Çetin, Şahap, Yılmaz, Yalçın, Yakar, Coşkun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c297t-1ce4ee9c9a56a16714923402e92bb55ec324110e38ca3d86f1dd13db2803083b3
container_end_page
container_issue 9
container_start_page 640
container_title Axioms
container_volume 13
creator Çetin, Şahap
Yılmaz, Yalçın
Yakar, Coşkun
description In this paper, a nonlinear dynamic equation with an initial value problem (IVP) on a time scale is considered. First, applying comparison results with a coupled lower solution (LS) and an upper solution (US), we improved the quasilinearization method (QLM) for the IVP. Unlike other studies, we consider the LS and US pair of the seventh type instead of the natural type. It was determined that the solutions of the dynamic equation converge uniformly and monotonically to the unique solution of the IVP, and the convergence is quadratic. Moreover, we will use the delta derivative (Δγ) instead of the classical derivative (dγ) in the proof because it studies a time scale. In the second part of the paper, we applied the monotone iterative technique (MIT) coupled with the LS and US, which is an effective method, proving a clear analytical representation for the solution of the equation when the relevant functions are monotonically non-decreasing and non-increasing. Then an example is given to illustrate the results obtained.
doi_str_mv 10.3390/axioms13090640
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25eae9c8a12e4ae787c01e90e1654608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811018708</galeid><doaj_id>oai_doaj_org_article_25eae9c8a12e4ae787c01e90e1654608</doaj_id><sourcerecordid>A811018708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-1ce4ee9c9a56a16714923402e92bb55ec324110e38ca3d86f1dd13db2803083b3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaKgVK-eFzxXM8l-JEcRPwqKiPUcp9lZTdndaJKK-utNrYhODjNM3nt5k2HsEPixlJqf4LvzQwTJNa9LvsX2BG-qKdSKb_-pd9lBjEueQ4NUIPfY490Ke5cwuTcqblfJ-oFi4cfixo8--ZGKWaKwuZ6TfR7d64oKHNsiE6Pr3UgY3GcGrDmUnn27Zs_dQMW9xZ722U6HfaSDnzxhDxfn87Or6fXt5ezs9HpqhW7SFCyVRNpqrGqEuoFSC1lyQVosFlVFVooSgJNUFmWr6g7aFmS7EIpLruRCTthso9t6XJqX4AYMH8ajM98NH54MhuRsT0ZUhPkphSCoRGpUYzmQ5gR1VdZZbcKONlovwedxYzJLvwpjtm9kNiGrSvEyo443qKc8pnFj51NAm09Lg7P56zqX-6cqM0A137I_BBt8jIG6X5vAzXqL5v8W5RcnoI_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110355804</pqid></control><display><type>article</type><title>Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale</title><source>Publicly Available Content Database</source><creator>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creator><creatorcontrib>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creatorcontrib><description>In this paper, a nonlinear dynamic equation with an initial value problem (IVP) on a time scale is considered. First, applying comparison results with a coupled lower solution (LS) and an upper solution (US), we improved the quasilinearization method (QLM) for the IVP. Unlike other studies, we consider the LS and US pair of the seventh type instead of the natural type. It was determined that the solutions of the dynamic equation converge uniformly and monotonically to the unique solution of the IVP, and the convergence is quadratic. Moreover, we will use the delta derivative (Δγ) instead of the classical derivative (dγ) in the proof because it studies a time scale. In the second part of the paper, we applied the monotone iterative technique (MIT) coupled with the LS and US, which is an effective method, proving a clear analytical representation for the solution of the equation when the relevant functions are monotonically non-decreasing and non-increasing. Then an example is given to illustrate the results obtained.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms13090640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary value problems ; Differential equations, Nonlinear ; extremal solutions ; Iterative methods (Mathematics) ; Nonlinear dynamics ; quadratic convergence ; quasilinearization ; Theorems ; Time ; time scale ; weakly convergence</subject><ispartof>Axioms, 2024-09, Vol.13 (9), p.640</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-1ce4ee9c9a56a16714923402e92bb55ec324110e38ca3d86f1dd13db2803083b3</cites><orcidid>0000-0003-4614-1442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110355804/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110355804?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><title>Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale</title><title>Axioms</title><description>In this paper, a nonlinear dynamic equation with an initial value problem (IVP) on a time scale is considered. First, applying comparison results with a coupled lower solution (LS) and an upper solution (US), we improved the quasilinearization method (QLM) for the IVP. Unlike other studies, we consider the LS and US pair of the seventh type instead of the natural type. It was determined that the solutions of the dynamic equation converge uniformly and monotonically to the unique solution of the IVP, and the convergence is quadratic. Moreover, we will use the delta derivative (Δγ) instead of the classical derivative (dγ) in the proof because it studies a time scale. In the second part of the paper, we applied the monotone iterative technique (MIT) coupled with the LS and US, which is an effective method, proving a clear analytical representation for the solution of the equation when the relevant functions are monotonically non-decreasing and non-increasing. Then an example is given to illustrate the results obtained.</description><subject>Boundary value problems</subject><subject>Differential equations, Nonlinear</subject><subject>extremal solutions</subject><subject>Iterative methods (Mathematics)</subject><subject>Nonlinear dynamics</subject><subject>quadratic convergence</subject><subject>quasilinearization</subject><subject>Theorems</subject><subject>Time</subject><subject>time scale</subject><subject>weakly convergence</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQDaKgVK-eFzxXM8l-JEcRPwqKiPUcp9lZTdndaJKK-utNrYhODjNM3nt5k2HsEPixlJqf4LvzQwTJNa9LvsX2BG-qKdSKb_-pd9lBjEueQ4NUIPfY490Ke5cwuTcqblfJ-oFi4cfixo8--ZGKWaKwuZ6TfR7d64oKHNsiE6Pr3UgY3GcGrDmUnn27Zs_dQMW9xZ722U6HfaSDnzxhDxfn87Or6fXt5ezs9HpqhW7SFCyVRNpqrGqEuoFSC1lyQVosFlVFVooSgJNUFmWr6g7aFmS7EIpLruRCTthso9t6XJqX4AYMH8ajM98NH54MhuRsT0ZUhPkphSCoRGpUYzmQ5gR1VdZZbcKONlovwedxYzJLvwpjtm9kNiGrSvEyo443qKc8pnFj51NAm09Lg7P56zqX-6cqM0A137I_BBt8jIG6X5vAzXqL5v8W5RcnoI_c</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Çetin, Şahap</creator><creator>Yılmaz, Yalçın</creator><creator>Yakar, Coşkun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4614-1442</orcidid></search><sort><creationdate>20240901</creationdate><title>Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale</title><author>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-1ce4ee9c9a56a16714923402e92bb55ec324110e38ca3d86f1dd13db2803083b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Differential equations, Nonlinear</topic><topic>extremal solutions</topic><topic>Iterative methods (Mathematics)</topic><topic>Nonlinear dynamics</topic><topic>quadratic convergence</topic><topic>quasilinearization</topic><topic>Theorems</topic><topic>Time</topic><topic>time scale</topic><topic>weakly convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çetin, Şahap</au><au>Yılmaz, Yalçın</au><au>Yakar, Coşkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale</atitle><jtitle>Axioms</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>9</issue><spage>640</spage><pages>640-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In this paper, a nonlinear dynamic equation with an initial value problem (IVP) on a time scale is considered. First, applying comparison results with a coupled lower solution (LS) and an upper solution (US), we improved the quasilinearization method (QLM) for the IVP. Unlike other studies, we consider the LS and US pair of the seventh type instead of the natural type. It was determined that the solutions of the dynamic equation converge uniformly and monotonically to the unique solution of the IVP, and the convergence is quadratic. Moreover, we will use the delta derivative (Δγ) instead of the classical derivative (dγ) in the proof because it studies a time scale. In the second part of the paper, we applied the monotone iterative technique (MIT) coupled with the LS and US, which is an effective method, proving a clear analytical representation for the solution of the equation when the relevant functions are monotonically non-decreasing and non-increasing. Then an example is given to illustrate the results obtained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms13090640</doi><orcidid>https://orcid.org/0000-0003-4614-1442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2024-09, Vol.13 (9), p.640
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_25eae9c8a12e4ae787c01e90e1654608
source Publicly Available Content Database
subjects Boundary value problems
Differential equations, Nonlinear
extremal solutions
Iterative methods (Mathematics)
Nonlinear dynamics
quadratic convergence
quasilinearization
Theorems
Time
time scale
weakly convergence
title Qualitative Outcomes on Monotone Iterative Technique and Quasilinearization Method on Time Scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20Outcomes%20on%20Monotone%20Iterative%20Technique%20and%20Quasilinearization%20Method%20on%20Time%20Scale&rft.jtitle=Axioms&rft.au=%C3%87etin,%20%C5%9Eahap&rft.date=2024-09-01&rft.volume=13&rft.issue=9&rft.spage=640&rft.pages=640-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms13090640&rft_dat=%3Cgale_doaj_%3EA811018708%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-1ce4ee9c9a56a16714923402e92bb55ec324110e38ca3d86f1dd13db2803083b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110355804&rft_id=info:pmid/&rft_galeid=A811018708&rfr_iscdi=true