Loading…

Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form

In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probab...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-02, Vol.11 (4), p.1934
Main Authors: Buonanno, Amedeo, Nogarotto, Antonio, Cacace, Giuseppe, Di Gennaro, Giovanni, Palmieri, Francesco A. N., Valenti, Maria, Graditi, Giorgio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3
cites cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3
container_end_page
container_issue 4
container_start_page 1934
container_title Applied sciences
container_volume 11
creator Buonanno, Amedeo
Nogarotto, Antonio
Cacace, Giuseppe
Di Gennaro, Giovanni
Palmieri, Francesco A. N.
Valenti, Maria
Graditi, Giorgio
description In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.
doi_str_mv 10.3390/app11041934
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ec3141a9e04309b7076779dd287394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25ec3141a9e04309b7076779dd287394</doaj_id><sourcerecordid>2534618265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</originalsourceid><addsrcrecordid>eNp9UdFKwzAUDaLg0D35AwEfpZrkpk3zOIedg6Eg7rncJuns2JqatA_7e6sT2ZP35Vwu5x4O5xByw9k9gGYP2HWcM8k1yDMyEUxlCUiuzk_2SzKNccvG0RxyziZk9ogHFxtsaeGwH4KjxRAb39J1bNoNLdD0PtBFwO6DNi19c3YwztIXH_a4o8UI1-Sixl1001-8Iuvi6X3-nKxeF8v5bJUY0KJPUg1KVTXLeCZqZY2rU5fWwgpRV0yy1NQ5CG2kUwaVklWGDjJrlVAIDDKEK7I86lqP27ILzR7DofTYlD8HHzYlhr4xO1eK1BngkqN2TALTlRoDUEpbK3IFWo5at0etLvjPwcW-3PohtKP98RdkxnORpf-ypIY8H32LkXV3ZJngYwyu_vPGWfldTHlSDHwBkMx8Tw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493880402</pqid></control><display><type>article</type><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</creator><creatorcontrib>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</creatorcontrib><description>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app11041934</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bayesian analysis ; bayesian networks ; belief propagation ; Boundaries ; Canonical forms ; Classification ; Data Fusion ; Data integration ; factor graph ; Identification documents ; Information sources ; Internet of Things ; Sensors</subject><ispartof>Applied sciences, 2021-02, Vol.11 (4), p.1934</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</citedby><cites>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</cites><orcidid>0000-0003-3494-2648 ; 0000-0001-9757-1712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2493880402/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2493880402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Buonanno, Amedeo</creatorcontrib><creatorcontrib>Nogarotto, Antonio</creatorcontrib><creatorcontrib>Cacace, Giuseppe</creatorcontrib><creatorcontrib>Di Gennaro, Giovanni</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Valenti, Maria</creatorcontrib><creatorcontrib>Graditi, Giorgio</creatorcontrib><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><title>Applied sciences</title><description>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>bayesian networks</subject><subject>belief propagation</subject><subject>Boundaries</subject><subject>Canonical forms</subject><subject>Classification</subject><subject>Data Fusion</subject><subject>Data integration</subject><subject>factor graph</subject><subject>Identification documents</subject><subject>Information sources</subject><subject>Internet of Things</subject><subject>Sensors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UdFKwzAUDaLg0D35AwEfpZrkpk3zOIedg6Eg7rncJuns2JqatA_7e6sT2ZP35Vwu5x4O5xByw9k9gGYP2HWcM8k1yDMyEUxlCUiuzk_2SzKNccvG0RxyziZk9ogHFxtsaeGwH4KjxRAb39J1bNoNLdD0PtBFwO6DNi19c3YwztIXH_a4o8UI1-Sixl1001-8Iuvi6X3-nKxeF8v5bJUY0KJPUg1KVTXLeCZqZY2rU5fWwgpRV0yy1NQ5CG2kUwaVklWGDjJrlVAIDDKEK7I86lqP27ILzR7DofTYlD8HHzYlhr4xO1eK1BngkqN2TALTlRoDUEpbK3IFWo5at0etLvjPwcW-3PohtKP98RdkxnORpf-ypIY8H32LkXV3ZJngYwyu_vPGWfldTHlSDHwBkMx8Tw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Buonanno, Amedeo</creator><creator>Nogarotto, Antonio</creator><creator>Cacace, Giuseppe</creator><creator>Di Gennaro, Giovanni</creator><creator>Palmieri, Francesco A. N.</creator><creator>Valenti, Maria</creator><creator>Graditi, Giorgio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3494-2648</orcidid><orcidid>https://orcid.org/0000-0001-9757-1712</orcidid></search><sort><creationdate>20210201</creationdate><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><author>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>bayesian networks</topic><topic>belief propagation</topic><topic>Boundaries</topic><topic>Canonical forms</topic><topic>Classification</topic><topic>Data Fusion</topic><topic>Data integration</topic><topic>factor graph</topic><topic>Identification documents</topic><topic>Information sources</topic><topic>Internet of Things</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buonanno, Amedeo</creatorcontrib><creatorcontrib>Nogarotto, Antonio</creatorcontrib><creatorcontrib>Cacace, Giuseppe</creatorcontrib><creatorcontrib>Di Gennaro, Giovanni</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Valenti, Maria</creatorcontrib><creatorcontrib>Graditi, Giorgio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buonanno, Amedeo</au><au>Nogarotto, Antonio</au><au>Cacace, Giuseppe</au><au>Di Gennaro, Giovanni</au><au>Palmieri, Francesco A. N.</au><au>Valenti, Maria</au><au>Graditi, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</atitle><jtitle>Applied sciences</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>1934</spage><pages>1934-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app11041934</doi><orcidid>https://orcid.org/0000-0003-3494-2648</orcidid><orcidid>https://orcid.org/0000-0001-9757-1712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2021-02, Vol.11 (4), p.1934
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_25ec3141a9e04309b7076779dd287394
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Bayesian analysis
bayesian networks
belief propagation
Boundaries
Canonical forms
Classification
Data Fusion
Data integration
factor graph
Identification documents
Information sources
Internet of Things
Sensors
title Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Feature%20Fusion%20Using%20Factor%20Graph%20in%20Reduced%20Normal%20Form&rft.jtitle=Applied%20sciences&rft.au=Buonanno,%20Amedeo&rft.date=2021-02-01&rft.volume=11&rft.issue=4&rft.spage=1934&rft.pages=1934-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app11041934&rft_dat=%3Cproquest_doaj_%3E2534618265%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493880402&rft_id=info:pmid/&rfr_iscdi=true