Loading…
Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form
In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probab...
Saved in:
Published in: | Applied sciences 2021-02, Vol.11 (4), p.1934 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3 |
container_end_page | |
container_issue | 4 |
container_start_page | 1934 |
container_title | Applied sciences |
container_volume | 11 |
creator | Buonanno, Amedeo Nogarotto, Antonio Cacace, Giuseppe Di Gennaro, Giovanni Palmieri, Francesco A. N. Valenti, Maria Graditi, Giorgio |
description | In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing. |
doi_str_mv | 10.3390/app11041934 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ec3141a9e04309b7076779dd287394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25ec3141a9e04309b7076779dd287394</doaj_id><sourcerecordid>2534618265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</originalsourceid><addsrcrecordid>eNp9UdFKwzAUDaLg0D35AwEfpZrkpk3zOIedg6Eg7rncJuns2JqatA_7e6sT2ZP35Vwu5x4O5xByw9k9gGYP2HWcM8k1yDMyEUxlCUiuzk_2SzKNccvG0RxyziZk9ogHFxtsaeGwH4KjxRAb39J1bNoNLdD0PtBFwO6DNi19c3YwztIXH_a4o8UI1-Sixl1001-8Iuvi6X3-nKxeF8v5bJUY0KJPUg1KVTXLeCZqZY2rU5fWwgpRV0yy1NQ5CG2kUwaVklWGDjJrlVAIDDKEK7I86lqP27ILzR7DofTYlD8HHzYlhr4xO1eK1BngkqN2TALTlRoDUEpbK3IFWo5at0etLvjPwcW-3PohtKP98RdkxnORpf-ypIY8H32LkXV3ZJngYwyu_vPGWfldTHlSDHwBkMx8Tw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493880402</pqid></control><display><type>article</type><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</creator><creatorcontrib>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</creatorcontrib><description>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app11041934</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bayesian analysis ; bayesian networks ; belief propagation ; Boundaries ; Canonical forms ; Classification ; Data Fusion ; Data integration ; factor graph ; Identification documents ; Information sources ; Internet of Things ; Sensors</subject><ispartof>Applied sciences, 2021-02, Vol.11 (4), p.1934</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</citedby><cites>FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</cites><orcidid>0000-0003-3494-2648 ; 0000-0001-9757-1712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2493880402/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2493880402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Buonanno, Amedeo</creatorcontrib><creatorcontrib>Nogarotto, Antonio</creatorcontrib><creatorcontrib>Cacace, Giuseppe</creatorcontrib><creatorcontrib>Di Gennaro, Giovanni</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Valenti, Maria</creatorcontrib><creatorcontrib>Graditi, Giorgio</creatorcontrib><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><title>Applied sciences</title><description>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>bayesian networks</subject><subject>belief propagation</subject><subject>Boundaries</subject><subject>Canonical forms</subject><subject>Classification</subject><subject>Data Fusion</subject><subject>Data integration</subject><subject>factor graph</subject><subject>Identification documents</subject><subject>Information sources</subject><subject>Internet of Things</subject><subject>Sensors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UdFKwzAUDaLg0D35AwEfpZrkpk3zOIedg6Eg7rncJuns2JqatA_7e6sT2ZP35Vwu5x4O5xByw9k9gGYP2HWcM8k1yDMyEUxlCUiuzk_2SzKNccvG0RxyziZk9ogHFxtsaeGwH4KjxRAb39J1bNoNLdD0PtBFwO6DNi19c3YwztIXH_a4o8UI1-Sixl1001-8Iuvi6X3-nKxeF8v5bJUY0KJPUg1KVTXLeCZqZY2rU5fWwgpRV0yy1NQ5CG2kUwaVklWGDjJrlVAIDDKEK7I86lqP27ILzR7DofTYlD8HHzYlhr4xO1eK1BngkqN2TALTlRoDUEpbK3IFWo5at0etLvjPwcW-3PohtKP98RdkxnORpf-ypIY8H32LkXV3ZJngYwyu_vPGWfldTHlSDHwBkMx8Tw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Buonanno, Amedeo</creator><creator>Nogarotto, Antonio</creator><creator>Cacace, Giuseppe</creator><creator>Di Gennaro, Giovanni</creator><creator>Palmieri, Francesco A. N.</creator><creator>Valenti, Maria</creator><creator>Graditi, Giorgio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3494-2648</orcidid><orcidid>https://orcid.org/0000-0001-9757-1712</orcidid></search><sort><creationdate>20210201</creationdate><title>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</title><author>Buonanno, Amedeo ; Nogarotto, Antonio ; Cacace, Giuseppe ; Di Gennaro, Giovanni ; Palmieri, Francesco A. N. ; Valenti, Maria ; Graditi, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>bayesian networks</topic><topic>belief propagation</topic><topic>Boundaries</topic><topic>Canonical forms</topic><topic>Classification</topic><topic>Data Fusion</topic><topic>Data integration</topic><topic>factor graph</topic><topic>Identification documents</topic><topic>Information sources</topic><topic>Internet of Things</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buonanno, Amedeo</creatorcontrib><creatorcontrib>Nogarotto, Antonio</creatorcontrib><creatorcontrib>Cacace, Giuseppe</creatorcontrib><creatorcontrib>Di Gennaro, Giovanni</creatorcontrib><creatorcontrib>Palmieri, Francesco A. N.</creatorcontrib><creatorcontrib>Valenti, Maria</creatorcontrib><creatorcontrib>Graditi, Giorgio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buonanno, Amedeo</au><au>Nogarotto, Antonio</au><au>Cacace, Giuseppe</au><au>Di Gennaro, Giovanni</au><au>Palmieri, Francesco A. N.</au><au>Valenti, Maria</au><au>Graditi, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form</atitle><jtitle>Applied sciences</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>1934</spage><pages>1934-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app11041934</doi><orcidid>https://orcid.org/0000-0003-3494-2648</orcidid><orcidid>https://orcid.org/0000-0001-9757-1712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2021-02, Vol.11 (4), p.1934 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_25ec3141a9e04309b7076779dd287394 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Bayesian analysis bayesian networks belief propagation Boundaries Canonical forms Classification Data Fusion Data integration factor graph Identification documents Information sources Internet of Things Sensors |
title | Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Feature%20Fusion%20Using%20Factor%20Graph%20in%20Reduced%20Normal%20Form&rft.jtitle=Applied%20sciences&rft.au=Buonanno,%20Amedeo&rft.date=2021-02-01&rft.volume=11&rft.issue=4&rft.spage=1934&rft.pages=1934-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app11041934&rft_dat=%3Cproquest_doaj_%3E2534618265%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-59377bf06162f7dcef5e5f2d22fb0405cf8329c4e7ca774b6ae36dd727a3036a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493880402&rft_id=info:pmid/&rfr_iscdi=true |