Loading…

Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel

Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the po...

Full description

Saved in:
Bibliographic Details
Published in:International journal of photoenergy 2021-12, Vol.2021, p.1-11
Main Authors: Xiong, Jiankun, Yang, Jianping, Zhao, Haiyan, Yang, Lin, Guo, Yang, Nie, Fuheng, Xu, Dexing, Yu, Liping, Cao, Fenghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3
cites cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3
container_end_page 11
container_issue
container_start_page 1
container_title International journal of photoenergy
container_volume 2021
creator Xiong, Jiankun
Yang, Jianping
Zhao, Haiyan
Yang, Lin
Guo, Yang
Nie, Fuheng
Xu, Dexing
Yu, Liping
Cao, Fenghong
description Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.
doi_str_mv 10.1155/2021/1143989
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16</doaj_id><sourcerecordid>2613960091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsKg7f0DApY7m5tXJUuujhYrgswshJJM7GpnO1MzU4r83WnHp6h4uH-ccOFm2D_QYQMoTRhmcAAiuC72RDUAVw1wyPdtMGoDmSrHZdrbXdcFRIYYCeKEG2fMoIi7I7XLRLyOSM3y1H6GNJDTkPCR2HmobyRPWfo5NTxz2K8SGXJ4xYhtPOB1FuG7hkYzR9vktdqHrbQLvesR6N9uqbN3h3u_dyR4uL-5H43x6czUZnU7zkhdS56JyqbSj3DLOUQ4l59xqXbKKOScrWXqpneCQoFJTBUl7VEKh16V30vOdbLL29a19M4sY5jZ-mtYG8_No44uxsQ9ljYZJRMWFpFoKUVTSOc-QWq6cHwoLKnkdrL0WsX1fYtebt3YZm1TfMJUqKEo1JOpoTZWx7bqI1V8qUPM9h_mew_zOkfDDNf4aGm9X4X_6CwrVhvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613960091</pqid></control><display><type>article</type><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong</creator><contributor>Yang, Weijie ; Weijie Yang</contributor><creatorcontrib>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong ; Yang, Weijie ; Weijie Yang</creatorcontrib><description>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</description><identifier>ISSN: 1110-662X</identifier><identifier>EISSN: 1687-529X</identifier><identifier>DOI: 10.1155/2021/1143989</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Coalescing ; Crack initiation ; Creep (materials) ; Creep tests ; Dimpling ; Dislocation density ; Ductile fracture ; Ductility ; Fracture mechanics ; Fracture surfaces ; Heat resistant steels ; High temperature ; Laves phase ; Metals ; Morphology ; Precipitates ; Rupture ; Scanning electron microscopy ; Steel ; Stress concentration ; Transgranular fracture ; Weld metal ; Weldments</subject><ispartof>International journal of photoenergy, 2021-12, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Jiankun Xiong et al.</rights><rights>Copyright © 2021 Jiankun Xiong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</citedby><cites>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</cites><orcidid>0000-0002-5073-8957 ; 0000-0002-7784-4354 ; 0000-0003-2253-5551 ; 0000-0001-5433-1962 ; 0000-0001-7271-5257 ; 0000-0001-5805-2143 ; 0000-0002-3217-3702 ; 0000-0002-7911-2982 ; 0000-0002-9701-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2613960091/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2613960091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Yang, Weijie</contributor><contributor>Weijie Yang</contributor><creatorcontrib>Xiong, Jiankun</creatorcontrib><creatorcontrib>Yang, Jianping</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Nie, Fuheng</creatorcontrib><creatorcontrib>Xu, Dexing</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Cao, Fenghong</creatorcontrib><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><title>International journal of photoenergy</title><description>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</description><subject>Coalescing</subject><subject>Crack initiation</subject><subject>Creep (materials)</subject><subject>Creep tests</subject><subject>Dimpling</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Ductility</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Heat resistant steels</subject><subject>High temperature</subject><subject>Laves phase</subject><subject>Metals</subject><subject>Morphology</subject><subject>Precipitates</subject><subject>Rupture</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Stress concentration</subject><subject>Transgranular fracture</subject><subject>Weld metal</subject><subject>Weldments</subject><issn>1110-662X</issn><issn>1687-529X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsKg7f0DApY7m5tXJUuujhYrgswshJJM7GpnO1MzU4r83WnHp6h4uH-ccOFm2D_QYQMoTRhmcAAiuC72RDUAVw1wyPdtMGoDmSrHZdrbXdcFRIYYCeKEG2fMoIi7I7XLRLyOSM3y1H6GNJDTkPCR2HmobyRPWfo5NTxz2K8SGXJ4xYhtPOB1FuG7hkYzR9vktdqHrbQLvesR6N9uqbN3h3u_dyR4uL-5H43x6czUZnU7zkhdS56JyqbSj3DLOUQ4l59xqXbKKOScrWXqpneCQoFJTBUl7VEKh16V30vOdbLL29a19M4sY5jZ-mtYG8_No44uxsQ9ljYZJRMWFpFoKUVTSOc-QWq6cHwoLKnkdrL0WsX1fYtebt3YZm1TfMJUqKEo1JOpoTZWx7bqI1V8qUPM9h_mew_zOkfDDNf4aGm9X4X_6CwrVhvU</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Xiong, Jiankun</creator><creator>Yang, Jianping</creator><creator>Zhao, Haiyan</creator><creator>Yang, Lin</creator><creator>Guo, Yang</creator><creator>Nie, Fuheng</creator><creator>Xu, Dexing</creator><creator>Yu, Liping</creator><creator>Cao, Fenghong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5073-8957</orcidid><orcidid>https://orcid.org/0000-0002-7784-4354</orcidid><orcidid>https://orcid.org/0000-0003-2253-5551</orcidid><orcidid>https://orcid.org/0000-0001-5433-1962</orcidid><orcidid>https://orcid.org/0000-0001-7271-5257</orcidid><orcidid>https://orcid.org/0000-0001-5805-2143</orcidid><orcidid>https://orcid.org/0000-0002-3217-3702</orcidid><orcidid>https://orcid.org/0000-0002-7911-2982</orcidid><orcidid>https://orcid.org/0000-0002-9701-4577</orcidid></search><sort><creationdate>20211214</creationdate><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><author>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coalescing</topic><topic>Crack initiation</topic><topic>Creep (materials)</topic><topic>Creep tests</topic><topic>Dimpling</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Ductility</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Heat resistant steels</topic><topic>High temperature</topic><topic>Laves phase</topic><topic>Metals</topic><topic>Morphology</topic><topic>Precipitates</topic><topic>Rupture</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Stress concentration</topic><topic>Transgranular fracture</topic><topic>Weld metal</topic><topic>Weldments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiankun</creatorcontrib><creatorcontrib>Yang, Jianping</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Nie, Fuheng</creatorcontrib><creatorcontrib>Xu, Dexing</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Cao, Fenghong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of photoenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiankun</au><au>Yang, Jianping</au><au>Zhao, Haiyan</au><au>Yang, Lin</au><au>Guo, Yang</au><au>Nie, Fuheng</au><au>Xu, Dexing</au><au>Yu, Liping</au><au>Cao, Fenghong</au><au>Yang, Weijie</au><au>Weijie Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</atitle><jtitle>International journal of photoenergy</jtitle><date>2021-12-14</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-662X</issn><eissn>1687-529X</eissn><abstract>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/1143989</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5073-8957</orcidid><orcidid>https://orcid.org/0000-0002-7784-4354</orcidid><orcidid>https://orcid.org/0000-0003-2253-5551</orcidid><orcidid>https://orcid.org/0000-0001-5433-1962</orcidid><orcidid>https://orcid.org/0000-0001-7271-5257</orcidid><orcidid>https://orcid.org/0000-0001-5805-2143</orcidid><orcidid>https://orcid.org/0000-0002-3217-3702</orcidid><orcidid>https://orcid.org/0000-0002-7911-2982</orcidid><orcidid>https://orcid.org/0000-0002-9701-4577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-662X
ispartof International journal of photoenergy, 2021-12, Vol.2021, p.1-11
issn 1110-662X
1687-529X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Coalescing
Crack initiation
Creep (materials)
Creep tests
Dimpling
Dislocation density
Ductile fracture
Ductility
Fracture mechanics
Fracture surfaces
Heat resistant steels
High temperature
Laves phase
Metals
Morphology
Precipitates
Rupture
Scanning electron microscopy
Steel
Stress concentration
Transgranular fracture
Weld metal
Weldments
title Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Rupture%20Behavior%20in%20Dissimilar%20Weldment%20between%20FB2%20and%2030Cr1Mo1V%20Heat-Resistant%20Steel&rft.jtitle=International%20journal%20of%20photoenergy&rft.au=Xiong,%20Jiankun&rft.date=2021-12-14&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-662X&rft.eissn=1687-529X&rft_id=info:doi/10.1155/2021/1143989&rft_dat=%3Cproquest_doaj_%3E2613960091%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613960091&rft_id=info:pmid/&rfr_iscdi=true