Loading…
Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel
Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the po...
Saved in:
Published in: | International journal of photoenergy 2021-12, Vol.2021, p.1-11 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | International journal of photoenergy |
container_volume | 2021 |
creator | Xiong, Jiankun Yang, Jianping Zhao, Haiyan Yang, Lin Guo, Yang Nie, Fuheng Xu, Dexing Yu, Liping Cao, Fenghong |
description | Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation. |
doi_str_mv | 10.1155/2021/1143989 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16</doaj_id><sourcerecordid>2613960091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsKg7f0DApY7m5tXJUuujhYrgswshJJM7GpnO1MzU4r83WnHp6h4uH-ccOFm2D_QYQMoTRhmcAAiuC72RDUAVw1wyPdtMGoDmSrHZdrbXdcFRIYYCeKEG2fMoIi7I7XLRLyOSM3y1H6GNJDTkPCR2HmobyRPWfo5NTxz2K8SGXJ4xYhtPOB1FuG7hkYzR9vktdqHrbQLvesR6N9uqbN3h3u_dyR4uL-5H43x6czUZnU7zkhdS56JyqbSj3DLOUQ4l59xqXbKKOScrWXqpneCQoFJTBUl7VEKh16V30vOdbLL29a19M4sY5jZ-mtYG8_No44uxsQ9ljYZJRMWFpFoKUVTSOc-QWq6cHwoLKnkdrL0WsX1fYtebt3YZm1TfMJUqKEo1JOpoTZWx7bqI1V8qUPM9h_mew_zOkfDDNf4aGm9X4X_6CwrVhvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613960091</pqid></control><display><type>article</type><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong</creator><contributor>Yang, Weijie ; Weijie Yang</contributor><creatorcontrib>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong ; Yang, Weijie ; Weijie Yang</creatorcontrib><description>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</description><identifier>ISSN: 1110-662X</identifier><identifier>EISSN: 1687-529X</identifier><identifier>DOI: 10.1155/2021/1143989</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Coalescing ; Crack initiation ; Creep (materials) ; Creep tests ; Dimpling ; Dislocation density ; Ductile fracture ; Ductility ; Fracture mechanics ; Fracture surfaces ; Heat resistant steels ; High temperature ; Laves phase ; Metals ; Morphology ; Precipitates ; Rupture ; Scanning electron microscopy ; Steel ; Stress concentration ; Transgranular fracture ; Weld metal ; Weldments</subject><ispartof>International journal of photoenergy, 2021-12, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Jiankun Xiong et al.</rights><rights>Copyright © 2021 Jiankun Xiong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</citedby><cites>FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</cites><orcidid>0000-0002-5073-8957 ; 0000-0002-7784-4354 ; 0000-0003-2253-5551 ; 0000-0001-5433-1962 ; 0000-0001-7271-5257 ; 0000-0001-5805-2143 ; 0000-0002-3217-3702 ; 0000-0002-7911-2982 ; 0000-0002-9701-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2613960091/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2613960091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Yang, Weijie</contributor><contributor>Weijie Yang</contributor><creatorcontrib>Xiong, Jiankun</creatorcontrib><creatorcontrib>Yang, Jianping</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Nie, Fuheng</creatorcontrib><creatorcontrib>Xu, Dexing</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Cao, Fenghong</creatorcontrib><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><title>International journal of photoenergy</title><description>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</description><subject>Coalescing</subject><subject>Crack initiation</subject><subject>Creep (materials)</subject><subject>Creep tests</subject><subject>Dimpling</subject><subject>Dislocation density</subject><subject>Ductile fracture</subject><subject>Ductility</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Heat resistant steels</subject><subject>High temperature</subject><subject>Laves phase</subject><subject>Metals</subject><subject>Morphology</subject><subject>Precipitates</subject><subject>Rupture</subject><subject>Scanning electron microscopy</subject><subject>Steel</subject><subject>Stress concentration</subject><subject>Transgranular fracture</subject><subject>Weld metal</subject><subject>Weldments</subject><issn>1110-662X</issn><issn>1687-529X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEUhQdRsKg7f0DApY7m5tXJUuujhYrgswshJJM7GpnO1MzU4r83WnHp6h4uH-ccOFm2D_QYQMoTRhmcAAiuC72RDUAVw1wyPdtMGoDmSrHZdrbXdcFRIYYCeKEG2fMoIi7I7XLRLyOSM3y1H6GNJDTkPCR2HmobyRPWfo5NTxz2K8SGXJ4xYhtPOB1FuG7hkYzR9vktdqHrbQLvesR6N9uqbN3h3u_dyR4uL-5H43x6czUZnU7zkhdS56JyqbSj3DLOUQ4l59xqXbKKOScrWXqpneCQoFJTBUl7VEKh16V30vOdbLL29a19M4sY5jZ-mtYG8_No44uxsQ9ljYZJRMWFpFoKUVTSOc-QWq6cHwoLKnkdrL0WsX1fYtebt3YZm1TfMJUqKEo1JOpoTZWx7bqI1V8qUPM9h_mew_zOkfDDNf4aGm9X4X_6CwrVhvU</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Xiong, Jiankun</creator><creator>Yang, Jianping</creator><creator>Zhao, Haiyan</creator><creator>Yang, Lin</creator><creator>Guo, Yang</creator><creator>Nie, Fuheng</creator><creator>Xu, Dexing</creator><creator>Yu, Liping</creator><creator>Cao, Fenghong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5073-8957</orcidid><orcidid>https://orcid.org/0000-0002-7784-4354</orcidid><orcidid>https://orcid.org/0000-0003-2253-5551</orcidid><orcidid>https://orcid.org/0000-0001-5433-1962</orcidid><orcidid>https://orcid.org/0000-0001-7271-5257</orcidid><orcidid>https://orcid.org/0000-0001-5805-2143</orcidid><orcidid>https://orcid.org/0000-0002-3217-3702</orcidid><orcidid>https://orcid.org/0000-0002-7911-2982</orcidid><orcidid>https://orcid.org/0000-0002-9701-4577</orcidid></search><sort><creationdate>20211214</creationdate><title>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</title><author>Xiong, Jiankun ; Yang, Jianping ; Zhao, Haiyan ; Yang, Lin ; Guo, Yang ; Nie, Fuheng ; Xu, Dexing ; Yu, Liping ; Cao, Fenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coalescing</topic><topic>Crack initiation</topic><topic>Creep (materials)</topic><topic>Creep tests</topic><topic>Dimpling</topic><topic>Dislocation density</topic><topic>Ductile fracture</topic><topic>Ductility</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Heat resistant steels</topic><topic>High temperature</topic><topic>Laves phase</topic><topic>Metals</topic><topic>Morphology</topic><topic>Precipitates</topic><topic>Rupture</topic><topic>Scanning electron microscopy</topic><topic>Steel</topic><topic>Stress concentration</topic><topic>Transgranular fracture</topic><topic>Weld metal</topic><topic>Weldments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiankun</creatorcontrib><creatorcontrib>Yang, Jianping</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Nie, Fuheng</creatorcontrib><creatorcontrib>Xu, Dexing</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Cao, Fenghong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of photoenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiankun</au><au>Yang, Jianping</au><au>Zhao, Haiyan</au><au>Yang, Lin</au><au>Guo, Yang</au><au>Nie, Fuheng</au><au>Xu, Dexing</au><au>Yu, Liping</au><au>Cao, Fenghong</au><au>Yang, Weijie</au><au>Weijie Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel</atitle><jtitle>International journal of photoenergy</jtitle><date>2021-12-14</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-662X</issn><eissn>1687-529X</eissn><abstract>Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/1143989</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5073-8957</orcidid><orcidid>https://orcid.org/0000-0002-7784-4354</orcidid><orcidid>https://orcid.org/0000-0003-2253-5551</orcidid><orcidid>https://orcid.org/0000-0001-5433-1962</orcidid><orcidid>https://orcid.org/0000-0001-7271-5257</orcidid><orcidid>https://orcid.org/0000-0001-5805-2143</orcidid><orcidid>https://orcid.org/0000-0002-3217-3702</orcidid><orcidid>https://orcid.org/0000-0002-7911-2982</orcidid><orcidid>https://orcid.org/0000-0002-9701-4577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-662X |
ispartof | International journal of photoenergy, 2021-12, Vol.2021, p.1-11 |
issn | 1110-662X 1687-529X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_25ee6345095448f5bbd2e0a36bd74a16 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Coalescing Crack initiation Creep (materials) Creep tests Dimpling Dislocation density Ductile fracture Ductility Fracture mechanics Fracture surfaces Heat resistant steels High temperature Laves phase Metals Morphology Precipitates Rupture Scanning electron microscopy Steel Stress concentration Transgranular fracture Weld metal Weldments |
title | Creep Rupture Behavior in Dissimilar Weldment between FB2 and 30Cr1Mo1V Heat-Resistant Steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Rupture%20Behavior%20in%20Dissimilar%20Weldment%20between%20FB2%20and%2030Cr1Mo1V%20Heat-Resistant%20Steel&rft.jtitle=International%20journal%20of%20photoenergy&rft.au=Xiong,%20Jiankun&rft.date=2021-12-14&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-662X&rft.eissn=1687-529X&rft_id=info:doi/10.1155/2021/1143989&rft_dat=%3Cproquest_doaj_%3E2613960091%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3859-4fb398b03a233e575333a99c2f2bb5f5cd59b431398c9061b43de646ed9cdb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613960091&rft_id=info:pmid/&rfr_iscdi=true |