Loading…
Spatially resolved mapping of proteome turnover dynamics with subcellular precision
Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the...
Saved in:
Published in: | Nature communications 2023-11, Vol.14 (1), p.7217-7217, Article 7217 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433 |
container_end_page | 7217 |
container_issue | 1 |
container_start_page | 7217 |
container_title | Nature communications |
container_volume | 14 |
creator | Yuan, Feng Li, Yi Zhou, Xinyue Meng, Peiyuan Zou, Peng |
description | Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum. |
doi_str_mv | 10.1038/s41467-023-42861-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af</doaj_id><sourcerecordid>2887157532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</originalsourceid><addsrcrecordid>eNp9ks1u3CAUhVHVKokmeYGsLHXTjRvgAoZVVUX9iRSpi6RrhDGeMMLGBXuqefswcZQ2XZQNCM75dDk6CF0S_JFgkFeZESaaGlOoGZWC1PINOqOYkZo0FN7-dT5FFznvcFmgiGTsBJ1CoxgWwM_Q3d1kZm9COFTJ5Rj2rqsGM01-3Faxr6YUZxcHV81LGuPepao7jGbwNle__fxQ5aW1LoQlmFS0zvrs43iO3vUmZHfxvG_Qz69f7q-_17c_vt1cf76tLRNqrvuWYNG0lBNBXQtCKcvBKNJS4J0SHWClMAjRd1y0BAQhYAlT0lBwBhjABt2s3C6anZ6SH0w66Gi8frqIaatNmr0NTlOBsQFquALKesqU6iSzCksirAPTF9anlTUt7eA668Y5mfAK-vpl9A96G_e6_AEoNKQQPjwTUvy1uDzrwedjOGZ0ccmaSikxcMV5kb7_R7qLJd-S1VHVEN7wwtwguqpsijkn179MQ7A-dkCvHdClA_qpA1oWE6ymXMTj1qU_6P-4HgEL97Hg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887157532</pqid></control><display><type>article</type><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><source>Nature_系列刊</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</creator><creatorcontrib>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</creatorcontrib><description>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42861-8</identifier><identifier>PMID: 37940635</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/475 ; 631/92/470/1463 ; 82/58 ; Differentiation ; Dynamics ; Endoplasmic reticulum ; Humanities and Social Sciences ; Isotopes ; Labeling ; Macromolecules ; Mapping ; Mitochondria ; multidisciplinary ; Peptide mapping ; Physiology ; Protein turnover ; Proteins ; Proteomes ; Proteomics ; Science ; Science (multidisciplinary) ; Spatial discrimination ; Spatial resolution ; Stable isotopes ; Turnover rate</subject><ispartof>Nature communications, 2023-11, Vol.14 (1), p.7217-7217, Article 7217</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</cites><orcidid>0000-0002-9798-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2887157532/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2887157532?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Yuan, Feng</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Meng, Peiyuan</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</description><subject>631/45/475</subject><subject>631/92/470/1463</subject><subject>82/58</subject><subject>Differentiation</subject><subject>Dynamics</subject><subject>Endoplasmic reticulum</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Labeling</subject><subject>Macromolecules</subject><subject>Mapping</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Peptide mapping</subject><subject>Physiology</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stable isotopes</subject><subject>Turnover rate</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u3CAUhVHVKokmeYGsLHXTjRvgAoZVVUX9iRSpi6RrhDGeMMLGBXuqefswcZQ2XZQNCM75dDk6CF0S_JFgkFeZESaaGlOoGZWC1PINOqOYkZo0FN7-dT5FFznvcFmgiGTsBJ1CoxgWwM_Q3d1kZm9COFTJ5Rj2rqsGM01-3Faxr6YUZxcHV81LGuPepao7jGbwNle__fxQ5aW1LoQlmFS0zvrs43iO3vUmZHfxvG_Qz69f7q-_17c_vt1cf76tLRNqrvuWYNG0lBNBXQtCKcvBKNJS4J0SHWClMAjRd1y0BAQhYAlT0lBwBhjABt2s3C6anZ6SH0w66Gi8frqIaatNmr0NTlOBsQFquALKesqU6iSzCksirAPTF9anlTUt7eA668Y5mfAK-vpl9A96G_e6_AEoNKQQPjwTUvy1uDzrwedjOGZ0ccmaSikxcMV5kb7_R7qLJd-S1VHVEN7wwtwguqpsijkn179MQ7A-dkCvHdClA_qpA1oWE6ymXMTj1qU_6P-4HgEL97Hg</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Yuan, Feng</creator><creator>Li, Yi</creator><creator>Zhou, Xinyue</creator><creator>Meng, Peiyuan</creator><creator>Zou, Peng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9798-5242</orcidid></search><sort><creationdate>20231108</creationdate><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><author>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/45/475</topic><topic>631/92/470/1463</topic><topic>82/58</topic><topic>Differentiation</topic><topic>Dynamics</topic><topic>Endoplasmic reticulum</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Labeling</topic><topic>Macromolecules</topic><topic>Mapping</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Peptide mapping</topic><topic>Physiology</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stable isotopes</topic><topic>Turnover rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Feng</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Meng, Peiyuan</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Feng</au><au>Li, Yi</au><au>Zhou, Xinyue</au><au>Meng, Peiyuan</au><au>Zou, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-11-08</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>7217</spage><epage>7217</epage><pages>7217-7217</pages><artnum>7217</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions.
Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37940635</pmid><doi>10.1038/s41467-023-42861-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9798-5242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-11, Vol.14 (1), p.7217-7217, Article 7217 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af |
source | Nature_系列刊; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45/475 631/92/470/1463 82/58 Differentiation Dynamics Endoplasmic reticulum Humanities and Social Sciences Isotopes Labeling Macromolecules Mapping Mitochondria multidisciplinary Peptide mapping Physiology Protein turnover Proteins Proteomes Proteomics Science Science (multidisciplinary) Spatial discrimination Spatial resolution Stable isotopes Turnover rate |
title | Spatially resolved mapping of proteome turnover dynamics with subcellular precision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20mapping%20of%20proteome%20turnover%20dynamics%20with%20subcellular%20precision&rft.jtitle=Nature%20communications&rft.au=Yuan,%20Feng&rft.date=2023-11-08&rft.volume=14&rft.issue=1&rft.spage=7217&rft.epage=7217&rft.pages=7217-7217&rft.artnum=7217&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42861-8&rft_dat=%3Cproquest_doaj_%3E2887157532%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887157532&rft_id=info:pmid/37940635&rfr_iscdi=true |