Loading…

Spatially resolved mapping of proteome turnover dynamics with subcellular precision

Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-11, Vol.14 (1), p.7217-7217, Article 7217
Main Authors: Yuan, Feng, Li, Yi, Zhou, Xinyue, Meng, Peiyuan, Zou, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433
container_end_page 7217
container_issue 1
container_start_page 7217
container_title Nature communications
container_volume 14
creator Yuan, Feng
Li, Yi
Zhou, Xinyue
Meng, Peiyuan
Zou, Peng
description Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions. Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.
doi_str_mv 10.1038/s41467-023-42861-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af</doaj_id><sourcerecordid>2887157532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</originalsourceid><addsrcrecordid>eNp9ks1u3CAUhVHVKokmeYGsLHXTjRvgAoZVVUX9iRSpi6RrhDGeMMLGBXuqefswcZQ2XZQNCM75dDk6CF0S_JFgkFeZESaaGlOoGZWC1PINOqOYkZo0FN7-dT5FFznvcFmgiGTsBJ1CoxgWwM_Q3d1kZm9COFTJ5Rj2rqsGM01-3Faxr6YUZxcHV81LGuPepao7jGbwNle__fxQ5aW1LoQlmFS0zvrs43iO3vUmZHfxvG_Qz69f7q-_17c_vt1cf76tLRNqrvuWYNG0lBNBXQtCKcvBKNJS4J0SHWClMAjRd1y0BAQhYAlT0lBwBhjABt2s3C6anZ6SH0w66Gi8frqIaatNmr0NTlOBsQFquALKesqU6iSzCksirAPTF9anlTUt7eA668Y5mfAK-vpl9A96G_e6_AEoNKQQPjwTUvy1uDzrwedjOGZ0ccmaSikxcMV5kb7_R7qLJd-S1VHVEN7wwtwguqpsijkn179MQ7A-dkCvHdClA_qpA1oWE6ymXMTj1qU_6P-4HgEL97Hg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887157532</pqid></control><display><type>article</type><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><source>Nature_系列刊</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</creator><creatorcontrib>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</creatorcontrib><description>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions. Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42861-8</identifier><identifier>PMID: 37940635</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/475 ; 631/92/470/1463 ; 82/58 ; Differentiation ; Dynamics ; Endoplasmic reticulum ; Humanities and Social Sciences ; Isotopes ; Labeling ; Macromolecules ; Mapping ; Mitochondria ; multidisciplinary ; Peptide mapping ; Physiology ; Protein turnover ; Proteins ; Proteomes ; Proteomics ; Science ; Science (multidisciplinary) ; Spatial discrimination ; Spatial resolution ; Stable isotopes ; Turnover rate</subject><ispartof>Nature communications, 2023-11, Vol.14 (1), p.7217-7217, Article 7217</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</cites><orcidid>0000-0002-9798-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2887157532/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2887157532?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Yuan, Feng</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Meng, Peiyuan</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions. Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</description><subject>631/45/475</subject><subject>631/92/470/1463</subject><subject>82/58</subject><subject>Differentiation</subject><subject>Dynamics</subject><subject>Endoplasmic reticulum</subject><subject>Humanities and Social Sciences</subject><subject>Isotopes</subject><subject>Labeling</subject><subject>Macromolecules</subject><subject>Mapping</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Peptide mapping</subject><subject>Physiology</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stable isotopes</subject><subject>Turnover rate</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u3CAUhVHVKokmeYGsLHXTjRvgAoZVVUX9iRSpi6RrhDGeMMLGBXuqefswcZQ2XZQNCM75dDk6CF0S_JFgkFeZESaaGlOoGZWC1PINOqOYkZo0FN7-dT5FFznvcFmgiGTsBJ1CoxgWwM_Q3d1kZm9COFTJ5Rj2rqsGM01-3Faxr6YUZxcHV81LGuPepao7jGbwNle__fxQ5aW1LoQlmFS0zvrs43iO3vUmZHfxvG_Qz69f7q-_17c_vt1cf76tLRNqrvuWYNG0lBNBXQtCKcvBKNJS4J0SHWClMAjRd1y0BAQhYAlT0lBwBhjABt2s3C6anZ6SH0w66Gi8frqIaatNmr0NTlOBsQFquALKesqU6iSzCksirAPTF9anlTUt7eA668Y5mfAK-vpl9A96G_e6_AEoNKQQPjwTUvy1uDzrwedjOGZ0ccmaSikxcMV5kb7_R7qLJd-S1VHVEN7wwtwguqpsijkn179MQ7A-dkCvHdClA_qpA1oWE6ymXMTj1qU_6P-4HgEL97Hg</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Yuan, Feng</creator><creator>Li, Yi</creator><creator>Zhou, Xinyue</creator><creator>Meng, Peiyuan</creator><creator>Zou, Peng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9798-5242</orcidid></search><sort><creationdate>20231108</creationdate><title>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</title><author>Yuan, Feng ; Li, Yi ; Zhou, Xinyue ; Meng, Peiyuan ; Zou, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/45/475</topic><topic>631/92/470/1463</topic><topic>82/58</topic><topic>Differentiation</topic><topic>Dynamics</topic><topic>Endoplasmic reticulum</topic><topic>Humanities and Social Sciences</topic><topic>Isotopes</topic><topic>Labeling</topic><topic>Macromolecules</topic><topic>Mapping</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Peptide mapping</topic><topic>Physiology</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stable isotopes</topic><topic>Turnover rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Feng</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Meng, Peiyuan</creatorcontrib><creatorcontrib>Zou, Peng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Feng</au><au>Li, Yi</au><au>Zhou, Xinyue</au><au>Meng, Peiyuan</au><au>Zou, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved mapping of proteome turnover dynamics with subcellular precision</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-11-08</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>7217</spage><epage>7217</epage><pages>7217-7217</pages><artnum>7217</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cellular activities are commonly associated with dynamic proteomic changes at the subcellular level. Although several techniques are available to quantify whole-cell protein turnover dynamics, such measurements often lack sufficient spatial resolution at the subcellular level. Herein, we report the development of prox-SILAC method that combines proximity-dependent protein labeling (APEX2/HRP) with metabolic incorporation of stable isotopes (pulse-SILAC) to map newly synthesized proteins with subcellular spatial resolution. We apply prox-SILAC to investigate proteome dynamics in the mitochondrial matrix and the endoplasmic reticulum (ER) lumen. Our analysis reveals a highly heterogeneous distribution in protein turnover dynamics within macromolecular machineries such as the mitochondrial ribosome and respiratory complexes I-V, thus shedding light on their mechanism of hierarchical assembly. Furthermore, we investigate the dynamic changes of ER proteome when cells are challenged with stress or undergoing stimulated differentiation, identifying subsets of proteins with unique patterns of turnover dynamics, which may play key regulatory roles in alleviating stress or promoting differentiation. We envision that prox-SILAC could be broadly applied to profile protein turnover at various subcellular compartments, under both physiological and pathological conditions. Mapping protein turnover dynamics with subcellular precision is crucial for understanding cell physiology and pathology. Here, the authors leveraged APEX2-mediated proximity labeling to develop prox-SILAC methods to profile protein turnover rates in the mitochondria and endoplasmic reticulum.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37940635</pmid><doi>10.1038/s41467-023-42861-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9798-5242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-11, Vol.14 (1), p.7217-7217, Article 7217
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2600a32a59324f2499d84c90816ce3af
source Nature_系列刊; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/475
631/92/470/1463
82/58
Differentiation
Dynamics
Endoplasmic reticulum
Humanities and Social Sciences
Isotopes
Labeling
Macromolecules
Mapping
Mitochondria
multidisciplinary
Peptide mapping
Physiology
Protein turnover
Proteins
Proteomes
Proteomics
Science
Science (multidisciplinary)
Spatial discrimination
Spatial resolution
Stable isotopes
Turnover rate
title Spatially resolved mapping of proteome turnover dynamics with subcellular precision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20mapping%20of%20proteome%20turnover%20dynamics%20with%20subcellular%20precision&rft.jtitle=Nature%20communications&rft.au=Yuan,%20Feng&rft.date=2023-11-08&rft.volume=14&rft.issue=1&rft.spage=7217&rft.epage=7217&rft.pages=7217-7217&rft.artnum=7217&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42861-8&rft_dat=%3Cproquest_doaj_%3E2887157532%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-fb1067b25162eb3699c53a91b235d96d30990366fd56b136113c1498a23ea3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887157532&rft_id=info:pmid/37940635&rfr_iscdi=true