Loading…

Irrigated pinto bean crop stress and yield assessment using ground based low altitude remote sensing technology

The pinto bean is one of widely consumed legume crop that constitutes over 42% of the U.S dry bean production. However, limited studies have been conducted in past to assess its quantitative and qualitative yield potentials. Emerging remote sensing technologies can help in such assessment. Therefore...

Full description

Saved in:
Bibliographic Details
Published in:Information processing in agriculture 2019-12, Vol.6 (4), p.502-514
Main Authors: Ranjan, Rakesh, Chandel, Abhilash K., Khot, Lav R., Bahlol, Haitham Y., Zhou, Jianfeng, Boydston, Rick A., Miklas, Phillip N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pinto bean is one of widely consumed legume crop that constitutes over 42% of the U.S dry bean production. However, limited studies have been conducted in past to assess its quantitative and qualitative yield potentials. Emerging remote sensing technologies can help in such assessment. Therefore, this study evaluates the role of ground-based multispectral imagery derived vegetation indices (VIs) for irrigated the pinto bean stress and yield assessments. Studied were eight cultivars of the pinto bean grown under conventional and strip tillage treatments and irrigated at 52% and 100% of required evapotranspiration. Imagery data was acquired using a five-band multispectral imager at early, mid and late growth stages. Commonly used 25 broadband VIs were derived to capture crop stress traits and yield potential. Principal component analysis and Spearman’s rank correlation tests were conducted to identify key VIs and their correlation (rs) with abiotic stress at each growth stage. Transformed difference vegetation index, nonlinear vegetation index (NLI), modified NLI and infrared percentage vegetation index (IPVI) were consistent in accounting the stress response and crop yield at all growth stages (rs > 0.60, coefficient of determination (R2): 0.50–0.56, P 
ISSN:2214-3173
2214-3173
DOI:10.1016/j.inpa.2019.01.005