Loading…

Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations

The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2020-12, Vol.20 (24), p.15761-15774
Main Authors: Borsdorff, Tobias, García Reynoso, Agustín, Maldonado, Gilberto, Mar-Morales, Bertha, Stremme, Wolfgang, Grutter, Michel, Landgraf, Jochen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353
container_end_page 15774
container_issue 24
container_start_page 15761
container_title Atmospheric chemistry and physics
container_volume 20
creator Borsdorff, Tobias
García Reynoso, Agustín
Maldonado, Gilberto
Mar-Morales, Bertha
Stremme, Wolfgang
Grutter, Michel
Landgraf, Jochen
description The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019 by means of collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model. We draw conclusions on the emissions from different urban districts in the region. Our WRF-Chem simulation distinguishes CO emissions from the districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, Mexico City, and Mexico City Arena by 10 separate tracers. For the data interpretation, we apply a source inversion approach determining per district the mean emissions and the temporal variability, the latter regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio (INEM) inventory that was adapted to the period 2017–2019 using in situ ground-based observations. For the Tula and Pachuca urban areas in the north of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO emissions, which exceeds significantly the INEM emissions of
doi_str_mv 10.5194/acp-20-15761-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645606144</galeid><doaj_id>oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7</doaj_id><sourcerecordid>A645606144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</originalsourceid><addsrcrecordid>eNptkktLAzEUhQdR8PkD3A24cjGaZPKapRQfBUul6jpkMndqSjupSSr135tpRS1IFrlcvnNucjlZdo7RFcMVvdZmWRBUYCY4TgVBe9kR5hIVoiR0_099mB2HMEOIMITpUfY8cp2Nzttumg_GOSxsCNZ1IXdtHt8gX0D0bunmNuQjWFvj8oGNn_kq9IKXyfhpPBr2QlcH8B869trT7KDV8wBn3_dJ9np3-zJ4KB7H98PBzWNh0uxYVAwZKQVIioypMGk5oaDbBjcSqKm5ZlgQIIQJVAEtpRamxjWpamDQ1iUrT7Lh1rdxeqaW3i60_1ROW7VpOD9V2kdr5qAIxw1HEjHMJJVSayoAhNElYUYYEMnrYuu19O59BSGqmVv5Lj1fESqQLEsqql9qqpOp7VoXvTZpZ0bdcMo44pjSRF39Q6XTpPUa10FrU39HcLkjSEyEdZzqVQhq-DzZZfGWNd6F4KH9-ThGqo-CSlFQBKlNFFQfhfILHJ2jMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470833479</pqid></control><display><type>article</type><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</creator><creatorcontrib>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</creatorcontrib><description>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019 by means of collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model. We draw conclusions on the emissions from different urban districts in the region. Our WRF-Chem simulation distinguishes CO emissions from the districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, Mexico City, and Mexico City Arena by 10 separate tracers. For the data interpretation, we apply a source inversion approach determining per district the mean emissions and the temporal variability, the latter regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio (INEM) inventory that was adapted to the period 2017–2019 using in situ ground-based observations. For the Tula and Pachuca urban areas in the north of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO emissions, which exceeds significantly the INEM emissions of &lt;0.008 Tg yr−1 for both areas. On the other hand for Mexico City, TROPOMI estimates emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus 0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1 adapted INEM emissions). Moreover, for both areas we found that the TROPOMI emission estimates follow a clear weekly cycle with a minimum during the weekend. This agrees well with ground-based in situ measurements from the Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer column measurements in Mexico City that are operated by the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI CO observations our analysis indicates the clear need for further improvements of regional models like WRF-Chem, in particular with respect to the prediction of the local wind fields.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-15761-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Air pollution ; Algorithms ; Analysis ; Atmospheric chemistry ; Atmospheric composition ; Atmospheric models ; Carbon monoxide ; Carbon monoxide emissions ; Data interpretation ; Datasets ; Emission inventories ; Emissions ; Exploitation ; Fourier analysis ; Fourier transform spectrometers ; Fourier transforms ; Ground-based observation ; In situ measurement ; Local winds ; Meteorological research ; Monitoring instruments ; Noise propagation ; Numerical weather forecasting ; Pollution monitoring ; Simulation ; Temporal variability ; Temporal variations ; Tracers ; Urban areas ; Weather ; Weather forecasting ; Weekly ; Wind fields</subject><ispartof>Atmospheric chemistry and physics, 2020-12, Vol.20 (24), p.15761-15774</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</cites><orcidid>0000-0001-9800-5878 ; 0000-0002-4421-0187 ; 0000-0003-0791-3833 ; 0000-0001-7718-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2470833479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2470833479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Borsdorff, Tobias</creatorcontrib><creatorcontrib>García Reynoso, Agustín</creatorcontrib><creatorcontrib>Maldonado, Gilberto</creatorcontrib><creatorcontrib>Mar-Morales, Bertha</creatorcontrib><creatorcontrib>Stremme, Wolfgang</creatorcontrib><creatorcontrib>Grutter, Michel</creatorcontrib><creatorcontrib>Landgraf, Jochen</creatorcontrib><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><title>Atmospheric chemistry and physics</title><description>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019 by means of collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model. We draw conclusions on the emissions from different urban districts in the region. Our WRF-Chem simulation distinguishes CO emissions from the districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, Mexico City, and Mexico City Arena by 10 separate tracers. For the data interpretation, we apply a source inversion approach determining per district the mean emissions and the temporal variability, the latter regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio (INEM) inventory that was adapted to the period 2017–2019 using in situ ground-based observations. For the Tula and Pachuca urban areas in the north of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO emissions, which exceeds significantly the INEM emissions of &lt;0.008 Tg yr−1 for both areas. On the other hand for Mexico City, TROPOMI estimates emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus 0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1 adapted INEM emissions). Moreover, for both areas we found that the TROPOMI emission estimates follow a clear weekly cycle with a minimum during the weekend. This agrees well with ground-based in situ measurements from the Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer column measurements in Mexico City that are operated by the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI CO observations our analysis indicates the clear need for further improvements of regional models like WRF-Chem, in particular with respect to the prediction of the local wind fields.</description><subject>Air pollution</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Carbon monoxide</subject><subject>Carbon monoxide emissions</subject><subject>Data interpretation</subject><subject>Datasets</subject><subject>Emission inventories</subject><subject>Emissions</subject><subject>Exploitation</subject><subject>Fourier analysis</subject><subject>Fourier transform spectrometers</subject><subject>Fourier transforms</subject><subject>Ground-based observation</subject><subject>In situ measurement</subject><subject>Local winds</subject><subject>Meteorological research</subject><subject>Monitoring instruments</subject><subject>Noise propagation</subject><subject>Numerical weather forecasting</subject><subject>Pollution monitoring</subject><subject>Simulation</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Tracers</subject><subject>Urban areas</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weekly</subject><subject>Wind fields</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktLAzEUhQdR8PkD3A24cjGaZPKapRQfBUul6jpkMndqSjupSSr135tpRS1IFrlcvnNucjlZdo7RFcMVvdZmWRBUYCY4TgVBe9kR5hIVoiR0_099mB2HMEOIMITpUfY8cp2Nzttumg_GOSxsCNZ1IXdtHt8gX0D0bunmNuQjWFvj8oGNn_kq9IKXyfhpPBr2QlcH8B869trT7KDV8wBn3_dJ9np3-zJ4KB7H98PBzWNh0uxYVAwZKQVIioypMGk5oaDbBjcSqKm5ZlgQIIQJVAEtpRamxjWpamDQ1iUrT7Lh1rdxeqaW3i60_1ROW7VpOD9V2kdr5qAIxw1HEjHMJJVSayoAhNElYUYYEMnrYuu19O59BSGqmVv5Lj1fESqQLEsqql9qqpOp7VoXvTZpZ0bdcMo44pjSRF39Q6XTpPUa10FrU39HcLkjSEyEdZzqVQhq-DzZZfGWNd6F4KH9-ThGqo-CSlFQBKlNFFQfhfILHJ2jMA</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Borsdorff, Tobias</creator><creator>García Reynoso, Agustín</creator><creator>Maldonado, Gilberto</creator><creator>Mar-Morales, Bertha</creator><creator>Stremme, Wolfgang</creator><creator>Grutter, Michel</creator><creator>Landgraf, Jochen</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9800-5878</orcidid><orcidid>https://orcid.org/0000-0002-4421-0187</orcidid><orcidid>https://orcid.org/0000-0003-0791-3833</orcidid><orcidid>https://orcid.org/0000-0001-7718-9241</orcidid></search><sort><creationdate>20201218</creationdate><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><author>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Carbon monoxide</topic><topic>Carbon monoxide emissions</topic><topic>Data interpretation</topic><topic>Datasets</topic><topic>Emission inventories</topic><topic>Emissions</topic><topic>Exploitation</topic><topic>Fourier analysis</topic><topic>Fourier transform spectrometers</topic><topic>Fourier transforms</topic><topic>Ground-based observation</topic><topic>In situ measurement</topic><topic>Local winds</topic><topic>Meteorological research</topic><topic>Monitoring instruments</topic><topic>Noise propagation</topic><topic>Numerical weather forecasting</topic><topic>Pollution monitoring</topic><topic>Simulation</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Tracers</topic><topic>Urban areas</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weekly</topic><topic>Wind fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsdorff, Tobias</creatorcontrib><creatorcontrib>García Reynoso, Agustín</creatorcontrib><creatorcontrib>Maldonado, Gilberto</creatorcontrib><creatorcontrib>Mar-Morales, Bertha</creatorcontrib><creatorcontrib>Stremme, Wolfgang</creatorcontrib><creatorcontrib>Grutter, Michel</creatorcontrib><creatorcontrib>Landgraf, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsdorff, Tobias</au><au>García Reynoso, Agustín</au><au>Maldonado, Gilberto</au><au>Mar-Morales, Bertha</au><au>Stremme, Wolfgang</au><au>Grutter, Michel</au><au>Landgraf, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-12-18</date><risdate>2020</risdate><volume>20</volume><issue>24</issue><spage>15761</spage><epage>15774</epage><pages>15761-15774</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019 by means of collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model. We draw conclusions on the emissions from different urban districts in the region. Our WRF-Chem simulation distinguishes CO emissions from the districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, Mexico City, and Mexico City Arena by 10 separate tracers. For the data interpretation, we apply a source inversion approach determining per district the mean emissions and the temporal variability, the latter regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio (INEM) inventory that was adapted to the period 2017–2019 using in situ ground-based observations. For the Tula and Pachuca urban areas in the north of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO emissions, which exceeds significantly the INEM emissions of &lt;0.008 Tg yr−1 for both areas. On the other hand for Mexico City, TROPOMI estimates emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus 0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1 adapted INEM emissions). Moreover, for both areas we found that the TROPOMI emission estimates follow a clear weekly cycle with a minimum during the weekend. This agrees well with ground-based in situ measurements from the Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer column measurements in Mexico City that are operated by the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI CO observations our analysis indicates the clear need for further improvements of regional models like WRF-Chem, in particular with respect to the prediction of the local wind fields.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-15761-2020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9800-5878</orcidid><orcidid>https://orcid.org/0000-0002-4421-0187</orcidid><orcidid>https://orcid.org/0000-0003-0791-3833</orcidid><orcidid>https://orcid.org/0000-0001-7718-9241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2020-12, Vol.20 (24), p.15761-15774
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Air pollution
Algorithms
Analysis
Atmospheric chemistry
Atmospheric composition
Atmospheric models
Carbon monoxide
Carbon monoxide emissions
Data interpretation
Datasets
Emission inventories
Emissions
Exploitation
Fourier analysis
Fourier transform spectrometers
Fourier transforms
Ground-based observation
In situ measurement
Local winds
Meteorological research
Monitoring instruments
Noise propagation
Numerical weather forecasting
Pollution monitoring
Simulation
Temporal variability
Temporal variations
Tracers
Urban areas
Weather
Weather forecasting
Weekly
Wind fields
title Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20CO%20emissions%20of%20the%20metropolis%20Mexico%20City%20using%20TROPOMI%20CO%20observations&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Borsdorff,%20Tobias&rft.date=2020-12-18&rft.volume=20&rft.issue=24&rft.spage=15761&rft.epage=15774&rft.pages=15761-15774&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-15761-2020&rft_dat=%3Cgale_doaj_%3EA645606144%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470833479&rft_id=info:pmid/&rft_galeid=A645606144&rfr_iscdi=true