Loading…
Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations
The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019...
Saved in:
Published in: | Atmospheric chemistry and physics 2020-12, Vol.20 (24), p.15761-15774 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353 |
container_end_page | 15774 |
container_issue | 24 |
container_start_page | 15761 |
container_title | Atmospheric chemistry and physics |
container_volume | 20 |
creator | Borsdorff, Tobias García Reynoso, Agustín Maldonado, Gilberto Mar-Morales, Bertha Stremme, Wolfgang Grutter, Michel Landgraf, Jochen |
description | The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5
satellite (S5-P) measures carbon monoxide (CO) total column concentrations as
one of its primary targets. In this study, we analyze TROPOMI observations
over Mexico City in the period 14 November 2017 to 25 August 2019 by means of
collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry
(WRF-Chem) model. We draw conclusions on the emissions from different urban districts
in the region. Our WRF-Chem simulation distinguishes CO emissions from the
districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala,
Puebla, Mexico City, and Mexico City Arena by 10 separate tracers.
For the data interpretation, we apply a source inversion approach determining
per district the mean emissions and the temporal variability, the latter
regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used
to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio
(INEM) inventory that was adapted to the period 2017–2019 using in situ
ground-based observations. For the Tula and Pachuca urban areas in the north
of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO
emissions, which exceeds significantly the INEM emissions of |
doi_str_mv | 10.5194/acp-20-15761-2020 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A645606144</galeid><doaj_id>oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7</doaj_id><sourcerecordid>A645606144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</originalsourceid><addsrcrecordid>eNptkktLAzEUhQdR8PkD3A24cjGaZPKapRQfBUul6jpkMndqSjupSSr135tpRS1IFrlcvnNucjlZdo7RFcMVvdZmWRBUYCY4TgVBe9kR5hIVoiR0_099mB2HMEOIMITpUfY8cp2Nzttumg_GOSxsCNZ1IXdtHt8gX0D0bunmNuQjWFvj8oGNn_kq9IKXyfhpPBr2QlcH8B869trT7KDV8wBn3_dJ9np3-zJ4KB7H98PBzWNh0uxYVAwZKQVIioypMGk5oaDbBjcSqKm5ZlgQIIQJVAEtpRamxjWpamDQ1iUrT7Lh1rdxeqaW3i60_1ROW7VpOD9V2kdr5qAIxw1HEjHMJJVSayoAhNElYUYYEMnrYuu19O59BSGqmVv5Lj1fESqQLEsqql9qqpOp7VoXvTZpZ0bdcMo44pjSRF39Q6XTpPUa10FrU39HcLkjSEyEdZzqVQhq-DzZZfGWNd6F4KH9-ThGqo-CSlFQBKlNFFQfhfILHJ2jMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470833479</pqid></control><display><type>article</type><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</creator><creatorcontrib>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</creatorcontrib><description>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5
satellite (S5-P) measures carbon monoxide (CO) total column concentrations as
one of its primary targets. In this study, we analyze TROPOMI observations
over Mexico City in the period 14 November 2017 to 25 August 2019 by means of
collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry
(WRF-Chem) model. We draw conclusions on the emissions from different urban districts
in the region. Our WRF-Chem simulation distinguishes CO emissions from the
districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala,
Puebla, Mexico City, and Mexico City Arena by 10 separate tracers.
For the data interpretation, we apply a source inversion approach determining
per district the mean emissions and the temporal variability, the latter
regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used
to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio
(INEM) inventory that was adapted to the period 2017–2019 using in situ
ground-based observations. For the Tula and Pachuca urban areas in the north
of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO
emissions, which exceeds significantly the INEM emissions of <0.008 Tg yr−1 for
both areas. On the other hand for Mexico City, TROPOMI estimates
emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM
emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena
the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus
0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions
of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1
adapted INEM emissions). Moreover, for both areas we found that the TROPOMI
emission estimates follow a clear weekly cycle with a minimum during the
weekend. This agrees well with ground-based in situ measurements from the
Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer
column measurements in Mexico City that are operated by the Network for the
Detection of Atmospheric Composition Change Infrared Working Group
(NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large
number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales
for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI
CO observations our analysis indicates the clear need for further improvements
of regional models like WRF-Chem, in particular with respect to the prediction
of the local wind fields.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-15761-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Air pollution ; Algorithms ; Analysis ; Atmospheric chemistry ; Atmospheric composition ; Atmospheric models ; Carbon monoxide ; Carbon monoxide emissions ; Data interpretation ; Datasets ; Emission inventories ; Emissions ; Exploitation ; Fourier analysis ; Fourier transform spectrometers ; Fourier transforms ; Ground-based observation ; In situ measurement ; Local winds ; Meteorological research ; Monitoring instruments ; Noise propagation ; Numerical weather forecasting ; Pollution monitoring ; Simulation ; Temporal variability ; Temporal variations ; Tracers ; Urban areas ; Weather ; Weather forecasting ; Weekly ; Wind fields</subject><ispartof>Atmospheric chemistry and physics, 2020-12, Vol.20 (24), p.15761-15774</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</cites><orcidid>0000-0001-9800-5878 ; 0000-0002-4421-0187 ; 0000-0003-0791-3833 ; 0000-0001-7718-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2470833479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2470833479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Borsdorff, Tobias</creatorcontrib><creatorcontrib>García Reynoso, Agustín</creatorcontrib><creatorcontrib>Maldonado, Gilberto</creatorcontrib><creatorcontrib>Mar-Morales, Bertha</creatorcontrib><creatorcontrib>Stremme, Wolfgang</creatorcontrib><creatorcontrib>Grutter, Michel</creatorcontrib><creatorcontrib>Landgraf, Jochen</creatorcontrib><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><title>Atmospheric chemistry and physics</title><description>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5
satellite (S5-P) measures carbon monoxide (CO) total column concentrations as
one of its primary targets. In this study, we analyze TROPOMI observations
over Mexico City in the period 14 November 2017 to 25 August 2019 by means of
collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry
(WRF-Chem) model. We draw conclusions on the emissions from different urban districts
in the region. Our WRF-Chem simulation distinguishes CO emissions from the
districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala,
Puebla, Mexico City, and Mexico City Arena by 10 separate tracers.
For the data interpretation, we apply a source inversion approach determining
per district the mean emissions and the temporal variability, the latter
regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used
to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio
(INEM) inventory that was adapted to the period 2017–2019 using in situ
ground-based observations. For the Tula and Pachuca urban areas in the north
of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO
emissions, which exceeds significantly the INEM emissions of <0.008 Tg yr−1 for
both areas. On the other hand for Mexico City, TROPOMI estimates
emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM
emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena
the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus
0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions
of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1
adapted INEM emissions). Moreover, for both areas we found that the TROPOMI
emission estimates follow a clear weekly cycle with a minimum during the
weekend. This agrees well with ground-based in situ measurements from the
Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer
column measurements in Mexico City that are operated by the Network for the
Detection of Atmospheric Composition Change Infrared Working Group
(NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large
number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales
for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI
CO observations our analysis indicates the clear need for further improvements
of regional models like WRF-Chem, in particular with respect to the prediction
of the local wind fields.</description><subject>Air pollution</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric composition</subject><subject>Atmospheric models</subject><subject>Carbon monoxide</subject><subject>Carbon monoxide emissions</subject><subject>Data interpretation</subject><subject>Datasets</subject><subject>Emission inventories</subject><subject>Emissions</subject><subject>Exploitation</subject><subject>Fourier analysis</subject><subject>Fourier transform spectrometers</subject><subject>Fourier transforms</subject><subject>Ground-based observation</subject><subject>In situ measurement</subject><subject>Local winds</subject><subject>Meteorological research</subject><subject>Monitoring instruments</subject><subject>Noise propagation</subject><subject>Numerical weather forecasting</subject><subject>Pollution monitoring</subject><subject>Simulation</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Tracers</subject><subject>Urban areas</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weekly</subject><subject>Wind fields</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktLAzEUhQdR8PkD3A24cjGaZPKapRQfBUul6jpkMndqSjupSSr135tpRS1IFrlcvnNucjlZdo7RFcMVvdZmWRBUYCY4TgVBe9kR5hIVoiR0_099mB2HMEOIMITpUfY8cp2Nzttumg_GOSxsCNZ1IXdtHt8gX0D0bunmNuQjWFvj8oGNn_kq9IKXyfhpPBr2QlcH8B869trT7KDV8wBn3_dJ9np3-zJ4KB7H98PBzWNh0uxYVAwZKQVIioypMGk5oaDbBjcSqKm5ZlgQIIQJVAEtpRamxjWpamDQ1iUrT7Lh1rdxeqaW3i60_1ROW7VpOD9V2kdr5qAIxw1HEjHMJJVSayoAhNElYUYYEMnrYuu19O59BSGqmVv5Lj1fESqQLEsqql9qqpOp7VoXvTZpZ0bdcMo44pjSRF39Q6XTpPUa10FrU39HcLkjSEyEdZzqVQhq-DzZZfGWNd6F4KH9-ThGqo-CSlFQBKlNFFQfhfILHJ2jMA</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Borsdorff, Tobias</creator><creator>García Reynoso, Agustín</creator><creator>Maldonado, Gilberto</creator><creator>Mar-Morales, Bertha</creator><creator>Stremme, Wolfgang</creator><creator>Grutter, Michel</creator><creator>Landgraf, Jochen</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9800-5878</orcidid><orcidid>https://orcid.org/0000-0002-4421-0187</orcidid><orcidid>https://orcid.org/0000-0003-0791-3833</orcidid><orcidid>https://orcid.org/0000-0001-7718-9241</orcidid></search><sort><creationdate>20201218</creationdate><title>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</title><author>Borsdorff, Tobias ; García Reynoso, Agustín ; Maldonado, Gilberto ; Mar-Morales, Bertha ; Stremme, Wolfgang ; Grutter, Michel ; Landgraf, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric composition</topic><topic>Atmospheric models</topic><topic>Carbon monoxide</topic><topic>Carbon monoxide emissions</topic><topic>Data interpretation</topic><topic>Datasets</topic><topic>Emission inventories</topic><topic>Emissions</topic><topic>Exploitation</topic><topic>Fourier analysis</topic><topic>Fourier transform spectrometers</topic><topic>Fourier transforms</topic><topic>Ground-based observation</topic><topic>In situ measurement</topic><topic>Local winds</topic><topic>Meteorological research</topic><topic>Monitoring instruments</topic><topic>Noise propagation</topic><topic>Numerical weather forecasting</topic><topic>Pollution monitoring</topic><topic>Simulation</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Tracers</topic><topic>Urban areas</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weekly</topic><topic>Wind fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsdorff, Tobias</creatorcontrib><creatorcontrib>García Reynoso, Agustín</creatorcontrib><creatorcontrib>Maldonado, Gilberto</creatorcontrib><creatorcontrib>Mar-Morales, Bertha</creatorcontrib><creatorcontrib>Stremme, Wolfgang</creatorcontrib><creatorcontrib>Grutter, Michel</creatorcontrib><creatorcontrib>Landgraf, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsdorff, Tobias</au><au>García Reynoso, Agustín</au><au>Maldonado, Gilberto</au><au>Mar-Morales, Bertha</au><au>Stremme, Wolfgang</au><au>Grutter, Michel</au><au>Landgraf, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-12-18</date><risdate>2020</risdate><volume>20</volume><issue>24</issue><spage>15761</spage><epage>15774</epage><pages>15761-15774</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5
satellite (S5-P) measures carbon monoxide (CO) total column concentrations as
one of its primary targets. In this study, we analyze TROPOMI observations
over Mexico City in the period 14 November 2017 to 25 August 2019 by means of
collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry
(WRF-Chem) model. We draw conclusions on the emissions from different urban districts
in the region. Our WRF-Chem simulation distinguishes CO emissions from the
districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala,
Puebla, Mexico City, and Mexico City Arena by 10 separate tracers.
For the data interpretation, we apply a source inversion approach determining
per district the mean emissions and the temporal variability, the latter
regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used
to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio
(INEM) inventory that was adapted to the period 2017–2019 using in situ
ground-based observations. For the Tula and Pachuca urban areas in the north
of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO
emissions, which exceeds significantly the INEM emissions of <0.008 Tg yr−1 for
both areas. On the other hand for Mexico City, TROPOMI estimates
emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM
emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena
the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus
0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions
of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1
adapted INEM emissions). Moreover, for both areas we found that the TROPOMI
emission estimates follow a clear weekly cycle with a minimum during the
weekend. This agrees well with ground-based in situ measurements from the
Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer
column measurements in Mexico City that are operated by the Network for the
Detection of Atmospheric Composition Change Infrared Working Group
(NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large
number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales
for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI
CO observations our analysis indicates the clear need for further improvements
of regional models like WRF-Chem, in particular with respect to the prediction
of the local wind fields.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-15761-2020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9800-5878</orcidid><orcidid>https://orcid.org/0000-0002-4421-0187</orcidid><orcidid>https://orcid.org/0000-0003-0791-3833</orcidid><orcidid>https://orcid.org/0000-0001-7718-9241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2020-12, Vol.20 (24), p.15761-15774 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_261d60805158488aa47ee7ca325c7ce7 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Air pollution Algorithms Analysis Atmospheric chemistry Atmospheric composition Atmospheric models Carbon monoxide Carbon monoxide emissions Data interpretation Datasets Emission inventories Emissions Exploitation Fourier analysis Fourier transform spectrometers Fourier transforms Ground-based observation In situ measurement Local winds Meteorological research Monitoring instruments Noise propagation Numerical weather forecasting Pollution monitoring Simulation Temporal variability Temporal variations Tracers Urban areas Weather Weather forecasting Weekly Wind fields |
title | Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20CO%20emissions%20of%20the%20metropolis%20Mexico%20City%20using%20TROPOMI%20CO%20observations&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Borsdorff,%20Tobias&rft.date=2020-12-18&rft.volume=20&rft.issue=24&rft.spage=15761&rft.epage=15774&rft.pages=15761-15774&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-15761-2020&rft_dat=%3Cgale_doaj_%3EA645606144%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-950c887e840cc912f624eafd1d8e4cb6a5172e225709e438a7cb1b29be5efb353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470833479&rft_id=info:pmid/&rft_galeid=A645606144&rfr_iscdi=true |