Loading…
Optimization of whole-cell biotransformation for scale-up production of α-arbutin from hydroquinone by the use of recombinant Escherichia coli
α-Arbutin is an effective skin-whitening cosmetic ingredient and hyperpigmentation therapy agent. It can be synthesized by one-step enzymatic glycosylation of hydroquinone (HQ), but limited by the low yield. Amylosucrase (Amy-1) from Xanthomonas campestris pv. campestris 8004 was recently identified...
Saved in:
Published in: | AMB Express 2019-06, Vol.9 (1), p.94-9, Article 94 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | α-Arbutin is an effective skin-whitening cosmetic ingredient and hyperpigmentation therapy agent. It can be synthesized by one-step enzymatic glycosylation of hydroquinone (HQ), but limited by the low yield. Amylosucrase (Amy-1) from
Xanthomonas campestris
pv.
campestris
8004 was recently identified with high HQ glycosylation activity. In this study, whole-cell transformation by Amy-1 was optimized and process scale-up was evaluated in 5000-L reactor. In comparison with purified Amy-1, whole-cell catalyst of recombinant
E. coli
displays better tolerance against inhibitors (oxidized products of HQ) and requires lower molar ratio of sucrose and HQ to reach high conversion rate (> 99%). Excess accumulation of glucose (0.6–1.0 M) derived from sucrose hydrolysis inhibits HQ glycosylation rate by 46–60%, which suggests the importance of balancing HQ glycosylation rate and sucrose hydrolysis rate by adjusting the activity of whole-cell catalyst and HQ-fed rate. Using optimal conditions, 540 mM of final concentration and 95% of molar conversion rate were obtained within 13–18 h in laboratory scale. For industrial scale-up production, 398 mM and 375 mM of final concentration with high conversion rates (~ 95%) were obtained in 3500-L and 4000-L of reaction volume, respectively. These yields and productivities (4.5–4.9 kg kL
−1
h
−1
) were the highest by comparing to the best we known. Hence, high-yield production of α-arbutin by batch-feeding whole-cell biotransformation was successfully achieved in the 5000-L reaction scale. |
---|---|
ISSN: | 2191-0855 2191-0855 |
DOI: | 10.1186/s13568-019-0820-7 |