Loading…

Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation

Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these paramete...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-07, Vol.13 (8), p.1196
Main Authors: Yuan, Mu, Li, Chen, Ge, Jiangqin, Xu, Qingduo, Li, Zhian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893
cites cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893
container_end_page
container_issue 8
container_start_page 1196
container_title Micromachines (Basel)
container_volume 13
creator Yuan, Mu
Li, Chen
Ge, Jiangqin
Xu, Qingduo
Li, Zhian
description Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.
doi_str_mv 10.3390/mi13081196
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724721565</galeid><doaj_id>oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4</doaj_id><sourcerecordid>A724721565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbKm98RcEvBFha74mHzdCWbpaqCi0gnchk5zZzTKT1GSmsv_ebHep1gSSw8l7nuQNp2neEnzBmMYfx0AYVoRo8aI5pVjShRDi58t_4pPmvJQtrkNKXZfXzQkTmHBC1GkDt9PsdyhFNG0AfU1TqOFyY7N1E-RQpuAKSj26TUPw6LvNNTFAQSGiVYiAVkP6vdfHCENB3Q79GKZsS4rBoaV9CJPdE980r3o7FDg_7mfN3erqbvllcfPt8_Xy8mbhOFHTQhOutWJdqz0XrnUKpKBCKfDeAwPcSss46ahVVcBE7_sOO6p75rvWK83OmusD1ie7Nfc5jDbvTLLBPCZSXpujAUMFZ7614KSSnHNdidjKznLCWuIcr6xPB9b93I3gHcTqa3gGfX4Sw8as04PRnFCBcQW8PwJy-jVDmcwYioNhsBHSXAyVWComiWJV-u4_6TbNOdaf2qsEVZRjVVUXB9XaVgMh9qne6-r0MAaXIvSh5i8l5ZKSVrS14MOhwOVUSob-6fUEm33zmL_Nw_4A7Iu0yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706282408</pqid></control><display><type>article</type><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</creator><creatorcontrib>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</creatorcontrib><description>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13081196</identifier><identifier>PMID: 36014118</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>bubble observation experiment ; Bubbles ; Bulk solids ; Cavitation ; Channeling (Physics) ; Efficiency ; fine particles ; Flow velocity ; fluent simulation ; Fluids ; High speed cameras ; Mechanical properties ; Microchannels ; microfluidic ; microfluidic mixing ; Microjets ; Observations ; Parameters ; Particle flow ; Precision machining ; Radiation ; Simulation ; Sound pressure ; Time and motion study ; ultrasonic cavitation ; Ultrasonic equipment ; Viscosity</subject><ispartof>Micromachines (Basel), 2022-07, Vol.13 (8), p.1196</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</citedby><cites>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706282408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706282408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yuan, Mu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ge, Jiangqin</creatorcontrib><creatorcontrib>Xu, Qingduo</creatorcontrib><creatorcontrib>Li, Zhian</creatorcontrib><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><title>Micromachines (Basel)</title><description>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</description><subject>bubble observation experiment</subject><subject>Bubbles</subject><subject>Bulk solids</subject><subject>Cavitation</subject><subject>Channeling (Physics)</subject><subject>Efficiency</subject><subject>fine particles</subject><subject>Flow velocity</subject><subject>fluent simulation</subject><subject>Fluids</subject><subject>High speed cameras</subject><subject>Mechanical properties</subject><subject>Microchannels</subject><subject>microfluidic</subject><subject>microfluidic mixing</subject><subject>Microjets</subject><subject>Observations</subject><subject>Parameters</subject><subject>Particle flow</subject><subject>Precision machining</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Sound pressure</subject><subject>Time and motion study</subject><subject>ultrasonic cavitation</subject><subject>Ultrasonic equipment</subject><subject>Viscosity</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbKm98RcEvBFha74mHzdCWbpaqCi0gnchk5zZzTKT1GSmsv_ebHep1gSSw8l7nuQNp2neEnzBmMYfx0AYVoRo8aI5pVjShRDi58t_4pPmvJQtrkNKXZfXzQkTmHBC1GkDt9PsdyhFNG0AfU1TqOFyY7N1E-RQpuAKSj26TUPw6LvNNTFAQSGiVYiAVkP6vdfHCENB3Q79GKZsS4rBoaV9CJPdE980r3o7FDg_7mfN3erqbvllcfPt8_Xy8mbhOFHTQhOutWJdqz0XrnUKpKBCKfDeAwPcSss46ahVVcBE7_sOO6p75rvWK83OmusD1ie7Nfc5jDbvTLLBPCZSXpujAUMFZ7614KSSnHNdidjKznLCWuIcr6xPB9b93I3gHcTqa3gGfX4Sw8as04PRnFCBcQW8PwJy-jVDmcwYioNhsBHSXAyVWComiWJV-u4_6TbNOdaf2qsEVZRjVVUXB9XaVgMh9qne6-r0MAaXIvSh5i8l5ZKSVrS14MOhwOVUSob-6fUEm33zmL_Nw_4A7Iu0yQ</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Yuan, Mu</creator><creator>Li, Chen</creator><creator>Ge, Jiangqin</creator><creator>Xu, Qingduo</creator><creator>Li, Zhian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220728</creationdate><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><author>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bubble observation experiment</topic><topic>Bubbles</topic><topic>Bulk solids</topic><topic>Cavitation</topic><topic>Channeling (Physics)</topic><topic>Efficiency</topic><topic>fine particles</topic><topic>Flow velocity</topic><topic>fluent simulation</topic><topic>Fluids</topic><topic>High speed cameras</topic><topic>Mechanical properties</topic><topic>Microchannels</topic><topic>microfluidic</topic><topic>microfluidic mixing</topic><topic>Microjets</topic><topic>Observations</topic><topic>Parameters</topic><topic>Particle flow</topic><topic>Precision machining</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Sound pressure</topic><topic>Time and motion study</topic><topic>ultrasonic cavitation</topic><topic>Ultrasonic equipment</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Mu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ge, Jiangqin</creatorcontrib><creatorcontrib>Xu, Qingduo</creatorcontrib><creatorcontrib>Li, Zhian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Mu</au><au>Li, Chen</au><au>Ge, Jiangqin</au><au>Xu, Qingduo</au><au>Li, Zhian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-07-28</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><spage>1196</spage><pages>1196-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36014118</pmid><doi>10.3390/mi13081196</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2022-07, Vol.13 (8), p.1196
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects bubble observation experiment
Bubbles
Bulk solids
Cavitation
Channeling (Physics)
Efficiency
fine particles
Flow velocity
fluent simulation
Fluids
High speed cameras
Mechanical properties
Microchannels
microfluidic
microfluidic mixing
Microjets
Observations
Parameters
Particle flow
Precision machining
Radiation
Simulation
Sound pressure
Time and motion study
ultrasonic cavitation
Ultrasonic equipment
Viscosity
title Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Motion%20Characteristics%20of%20Solid%20Particles%20in%20Fine%20Flow%20Channels%20by%20Ultrasonic%20Cavitation&rft.jtitle=Micromachines%20(Basel)&rft.au=Yuan,%20Mu&rft.date=2022-07-28&rft.volume=13&rft.issue=8&rft.spage=1196&rft.pages=1196-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13081196&rft_dat=%3Cgale_doaj_%3EA724721565%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706282408&rft_id=info:pmid/36014118&rft_galeid=A724721565&rfr_iscdi=true