Loading…
Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation
Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these paramete...
Saved in:
Published in: | Micromachines (Basel) 2022-07, Vol.13 (8), p.1196 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893 |
container_end_page | |
container_issue | 8 |
container_start_page | 1196 |
container_title | Micromachines (Basel) |
container_volume | 13 |
creator | Yuan, Mu Li, Chen Ge, Jiangqin Xu, Qingduo Li, Zhian |
description | Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining. |
doi_str_mv | 10.3390/mi13081196 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724721565</galeid><doaj_id>oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4</doaj_id><sourcerecordid>A724721565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbKm98RcEvBFha74mHzdCWbpaqCi0gnchk5zZzTKT1GSmsv_ebHep1gSSw8l7nuQNp2neEnzBmMYfx0AYVoRo8aI5pVjShRDi58t_4pPmvJQtrkNKXZfXzQkTmHBC1GkDt9PsdyhFNG0AfU1TqOFyY7N1E-RQpuAKSj26TUPw6LvNNTFAQSGiVYiAVkP6vdfHCENB3Q79GKZsS4rBoaV9CJPdE980r3o7FDg_7mfN3erqbvllcfPt8_Xy8mbhOFHTQhOutWJdqz0XrnUKpKBCKfDeAwPcSss46ahVVcBE7_sOO6p75rvWK83OmusD1ie7Nfc5jDbvTLLBPCZSXpujAUMFZ7614KSSnHNdidjKznLCWuIcr6xPB9b93I3gHcTqa3gGfX4Sw8as04PRnFCBcQW8PwJy-jVDmcwYioNhsBHSXAyVWComiWJV-u4_6TbNOdaf2qsEVZRjVVUXB9XaVgMh9qne6-r0MAaXIvSh5i8l5ZKSVrS14MOhwOVUSob-6fUEm33zmL_Nw_4A7Iu0yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706282408</pqid></control><display><type>article</type><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</creator><creatorcontrib>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</creatorcontrib><description>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13081196</identifier><identifier>PMID: 36014118</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>bubble observation experiment ; Bubbles ; Bulk solids ; Cavitation ; Channeling (Physics) ; Efficiency ; fine particles ; Flow velocity ; fluent simulation ; Fluids ; High speed cameras ; Mechanical properties ; Microchannels ; microfluidic ; microfluidic mixing ; Microjets ; Observations ; Parameters ; Particle flow ; Precision machining ; Radiation ; Simulation ; Sound pressure ; Time and motion study ; ultrasonic cavitation ; Ultrasonic equipment ; Viscosity</subject><ispartof>Micromachines (Basel), 2022-07, Vol.13 (8), p.1196</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</citedby><cites>FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706282408/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706282408?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yuan, Mu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ge, Jiangqin</creatorcontrib><creatorcontrib>Xu, Qingduo</creatorcontrib><creatorcontrib>Li, Zhian</creatorcontrib><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><title>Micromachines (Basel)</title><description>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</description><subject>bubble observation experiment</subject><subject>Bubbles</subject><subject>Bulk solids</subject><subject>Cavitation</subject><subject>Channeling (Physics)</subject><subject>Efficiency</subject><subject>fine particles</subject><subject>Flow velocity</subject><subject>fluent simulation</subject><subject>Fluids</subject><subject>High speed cameras</subject><subject>Mechanical properties</subject><subject>Microchannels</subject><subject>microfluidic</subject><subject>microfluidic mixing</subject><subject>Microjets</subject><subject>Observations</subject><subject>Parameters</subject><subject>Particle flow</subject><subject>Precision machining</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Sound pressure</subject><subject>Time and motion study</subject><subject>ultrasonic cavitation</subject><subject>Ultrasonic equipment</subject><subject>Viscosity</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbKm98RcEvBFha74mHzdCWbpaqCi0gnchk5zZzTKT1GSmsv_ebHep1gSSw8l7nuQNp2neEnzBmMYfx0AYVoRo8aI5pVjShRDi58t_4pPmvJQtrkNKXZfXzQkTmHBC1GkDt9PsdyhFNG0AfU1TqOFyY7N1E-RQpuAKSj26TUPw6LvNNTFAQSGiVYiAVkP6vdfHCENB3Q79GKZsS4rBoaV9CJPdE980r3o7FDg_7mfN3erqbvllcfPt8_Xy8mbhOFHTQhOutWJdqz0XrnUKpKBCKfDeAwPcSss46ahVVcBE7_sOO6p75rvWK83OmusD1ie7Nfc5jDbvTLLBPCZSXpujAUMFZ7614KSSnHNdidjKznLCWuIcr6xPB9b93I3gHcTqa3gGfX4Sw8as04PRnFCBcQW8PwJy-jVDmcwYioNhsBHSXAyVWComiWJV-u4_6TbNOdaf2qsEVZRjVVUXB9XaVgMh9qne6-r0MAaXIvSh5i8l5ZKSVrS14MOhwOVUSob-6fUEm33zmL_Nw_4A7Iu0yQ</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Yuan, Mu</creator><creator>Li, Chen</creator><creator>Ge, Jiangqin</creator><creator>Xu, Qingduo</creator><creator>Li, Zhian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220728</creationdate><title>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</title><author>Yuan, Mu ; Li, Chen ; Ge, Jiangqin ; Xu, Qingduo ; Li, Zhian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bubble observation experiment</topic><topic>Bubbles</topic><topic>Bulk solids</topic><topic>Cavitation</topic><topic>Channeling (Physics)</topic><topic>Efficiency</topic><topic>fine particles</topic><topic>Flow velocity</topic><topic>fluent simulation</topic><topic>Fluids</topic><topic>High speed cameras</topic><topic>Mechanical properties</topic><topic>Microchannels</topic><topic>microfluidic</topic><topic>microfluidic mixing</topic><topic>Microjets</topic><topic>Observations</topic><topic>Parameters</topic><topic>Particle flow</topic><topic>Precision machining</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Sound pressure</topic><topic>Time and motion study</topic><topic>ultrasonic cavitation</topic><topic>Ultrasonic equipment</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Mu</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Ge, Jiangqin</creatorcontrib><creatorcontrib>Xu, Qingduo</creatorcontrib><creatorcontrib>Li, Zhian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Mu</au><au>Li, Chen</au><au>Ge, Jiangqin</au><au>Xu, Qingduo</au><au>Li, Zhian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-07-28</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><spage>1196</spage><pages>1196-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Microjets caused by the cavitation effect in microchannels can affect the motion trajectory of solid particles in microchannels under ultrasonic conditions. The optimal parameters for an observation experiment were obtained through simulations, and an experiment was designed to verify these parameters. When the cavitation bubbles collapse in the near-wall area, the solid particles in the microchannel can be displaced along the expected motion trajectory. Using fluent software to simulate the bubble collapse process, it can be seen that, when an ultrasonic sound pressure acts on a bubble near the wall, the pressure causes the top of the bubble wall to sink inward and eventually penetrate the bottom of the bubble wall, forming a high-speed microjet. The maximum speed of the jet can reach nearly 28 m/s, and the liquid near the top of the bubble also moves at a high speed, driving the particles in the liquid towards the wall. A high-speed camera was used to observe the ultrasonic cavitation process of bubbles in the water to verify the simulation results. A comparison of particle motion with and without ultrasonic waves proved the feasibility of using the ultrasonic cavitation effect to guide small particles towards the wall. This method provides a novel experimental basis for changing the fluid layer state in the microchannel and improving precision machining.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36014118</pmid><doi>10.3390/mi13081196</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2022-07, Vol.13 (8), p.1196 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2643d5aec787444989d0a7ba41351cc4 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | bubble observation experiment Bubbles Bulk solids Cavitation Channeling (Physics) Efficiency fine particles Flow velocity fluent simulation Fluids High speed cameras Mechanical properties Microchannels microfluidic microfluidic mixing Microjets Observations Parameters Particle flow Precision machining Radiation Simulation Sound pressure Time and motion study ultrasonic cavitation Ultrasonic equipment Viscosity |
title | Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Motion%20Characteristics%20of%20Solid%20Particles%20in%20Fine%20Flow%20Channels%20by%20Ultrasonic%20Cavitation&rft.jtitle=Micromachines%20(Basel)&rft.au=Yuan,%20Mu&rft.date=2022-07-28&rft.volume=13&rft.issue=8&rft.spage=1196&rft.pages=1196-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13081196&rft_dat=%3Cgale_doaj_%3EA724721565%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9149983b59d46c5c8e762688eddde3e057a341b2a89d436fdfb0c29f3db5d893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706282408&rft_id=info:pmid/36014118&rft_galeid=A724721565&rfr_iscdi=true |