Loading…
Fault Diagnosis of Rotating Machinery Based on Adaptive Stochastic Resonance and AMD-EEMD
An adaptive stochastic resonance and analytical mode decomposition-ensemble empirical mode decomposition (AMD-EEMD) method is proposed for fault diagnosis of rotating machinery in this paper. Firstly, the stochastic resonance system is optimized by particle swarm optimization (PSO), and the best str...
Saved in:
Published in: | Shock and vibration 2016-01, Vol.2016 (2016), p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An adaptive stochastic resonance and analytical mode decomposition-ensemble empirical mode decomposition (AMD-EEMD) method is proposed for fault diagnosis of rotating machinery in this paper. Firstly, the stochastic resonance system is optimized by particle swarm optimization (PSO), and the best structure parameters are obtained. Then, the signal with noise is put into the stochastic resonance system and denoising and enhancing the signal. Secondly, the signal output from the stochastic resonance system is extracted by analytical mode decomposition (AMD) method. Finally, the signal is decomposed by ensemble empirical mode decomposition (EEMD) method. The simulation results show that the optimal stochastic resonance system can effectively improve the signal-to-noise ratio, and the number of effective components of EEMD decomposition is significantly reduced after using AMD, thus improving the decomposition results of EEMD and enhancing the amplitude of components frequency. Through the extraction of the rolling bearing fault signal feature proved that the method has a good effect. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2016/9278581 |