Loading…
Fatty Acid Elongase 7 (ELOVL7) Plays a Role in the Synthesis of Long-Chain Unsaturated Fatty Acids in Goat Mammary Epithelial Cells
In humans, fatty acid elongase 7 (ELOVL7) plays a role in synthesis of long-chain saturated fatty acids. Whether ELOVL7 protein plays a role in ruminants is unclear. The transcript abundance of ELOVL7 in goat mammary tissue was assessed at three stages of lactation. Results showed that ELOVL7 had th...
Saved in:
Published in: | Animals (Basel) 2019-06, Vol.9 (6), p.389 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In humans, fatty acid elongase 7 (ELOVL7) plays a role in synthesis of long-chain saturated fatty acids. Whether ELOVL7 protein plays a role in ruminants is unclear. The transcript abundance of ELOVL7 in goat mammary tissue was assessed at three stages of lactation. Results showed that ELOVL7 had the highest expression in the dry period compared with peak and late lactation period. Results revealed that ELOVL7 overexpression was correlated with lower expression in diacylglycerol O-acyltransferase 2 (
) and stearoyl-CoA desaturase 1 (
), and had no significant effect on triacylglycerol concentration. Overexpression of
significantly decreased the concentration of palmitoleic (C16:1n7) and oleic (C18:1n9) acid, and increased the concentration of vaccenic (C18:1n7) and linoleic (C18:2) acid. Overexpression of
significantly upregulated the elongation index of C16:1 in goat epithelial mammary cells (GMEC), but had a minor effect on that of palmitate (C16:0). Knockdown of ELOVL7 decreased mRNA expression of fatty acid binding protein 3 (FABP3) and fatty acid desaturase 2 (FADS2) and had a minor effect on triacylglycerol concentration; however, it increased concentration of C18:1n9 in GMEC. The elongation indices of C16:0 and C16:1 did not differ due to knockdown of ELOVL7. The minor change for the C16:0 and stearate (C18:0) was observed after activation of ELOVL7, suggesting the two fatty acids are not the preferential substrates of ELOVL7 in cultured GMEC. However, changes in C18:1n9 and C18:2 after overexpression or knockdown of
indicated a biological functional role of ELOVL7. Collectively, our data highlighted a role of ELOVL7 in long-chain unsaturated fatty acid elongation in goat mammary epithelial cells. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani9060389 |