Loading…
Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms
Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters...
Saved in:
Published in: | Energies (Basel) 2022-08, Vol.15 (16), p.5893 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3 |
container_end_page | |
container_issue | 16 |
container_start_page | 5893 |
container_title | Energies (Basel) |
container_volume | 15 |
creator | Mukherjee, Sanchay Johns, Russell T. |
description | Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function. |
doi_str_mv | 10.3390/en15165893 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_267582e101bc43c09d40990045d20d93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745599029</galeid><doaj_id>oai_doaj_org_article_267582e101bc43c09d40990045d20d93</doaj_id><sourcerecordid>A745599029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</originalsourceid><addsrcrecordid>eNpNUs1uEzEQXiGQqEIvPIEFN0SKf9a76-MqaiFSEFV_ztasdzZxtLGL7VTKjXfoM_TFeBKcbgTYhxl9883nGc8UxXtGL4RQ9As6JlklGyVeFWdMqWrOaC1e_-e_Lc5j3NJ8hGBCiLPi-RZdtMk-2nQgrYPxEG0kfiBX4972v389vViydAnDAMbCSNqA8JlcbyAiuYW0D5CsdwRcfwIX3jk0J80cucExUx6RXGPYIXR2PAYuY7K7KfU-Wrcm38FsrEOyQgjuCLTj2gebNrv4rngzwBjx_GRnxf3V5d3i23z14-ty0a7mpuR1mislqZAlZbTjDQcOKBWoocKu4gOyvgHVCVRd2dUVCIayVsA7roRhZVWaQcyK5aTbe9jqh5ALDAftweoXwIe1hpCsGVHzqpYNR0ZZZ0phqOpLqhSlpew57ZXIWh8mLZ8b1dHYhGZjpq_RTDWCMZ5JHyfSQ_A_9xiT3vp9yGOImte0Og5O0cy6mFhryC9bN_gUwOTb485mSRxsxtu6lDKXkPuZFZ-mBBN8jAGHv70wqo-7ov_tivgDbESyLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706199690</pqid></control><display><type>article</type><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><source>Publicly Available Content Database</source><creator>Mukherjee, Sanchay ; Johns, Russell T.</creator><creatorcontrib>Mukherjee, Sanchay ; Johns, Russell T. ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><description>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15165893</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Connectivity ; Contact angle ; Data mining ; Decision trees ; Drainage ; fluid–fluid interfacial area ; Hydrocarbons ; Learning algorithms ; Machine learning ; OTHER INSTRUMENTATION ; out-of-bag predictor importance ; Parameter sensitivity ; Permeability ; phase connectivity ; Quadrants ; relative permeability ; Saturation ; Sensitivity analysis ; Simulation ; state function ; Viscosity ; Wettability ; Wetting</subject><ispartof>Energies (Basel), 2022-08, Vol.15 (16), p.5893</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</citedby><cites>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</cites><orcidid>0000-0001-9522-9382 ; 0000000195229382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706199690/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706199690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1983112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sanchay</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><title>Energies (Basel)</title><description>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Connectivity</subject><subject>Contact angle</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Drainage</subject><subject>fluid–fluid interfacial area</subject><subject>Hydrocarbons</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>OTHER INSTRUMENTATION</subject><subject>out-of-bag predictor importance</subject><subject>Parameter sensitivity</subject><subject>Permeability</subject><subject>phase connectivity</subject><subject>Quadrants</subject><subject>relative permeability</subject><subject>Saturation</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>state function</subject><subject>Viscosity</subject><subject>Wettability</subject><subject>Wetting</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUs1uEzEQXiGQqEIvPIEFN0SKf9a76-MqaiFSEFV_ztasdzZxtLGL7VTKjXfoM_TFeBKcbgTYhxl9883nGc8UxXtGL4RQ9As6JlklGyVeFWdMqWrOaC1e_-e_Lc5j3NJ8hGBCiLPi-RZdtMk-2nQgrYPxEG0kfiBX4972v389vViydAnDAMbCSNqA8JlcbyAiuYW0D5CsdwRcfwIX3jk0J80cucExUx6RXGPYIXR2PAYuY7K7KfU-Wrcm38FsrEOyQgjuCLTj2gebNrv4rngzwBjx_GRnxf3V5d3i23z14-ty0a7mpuR1mislqZAlZbTjDQcOKBWoocKu4gOyvgHVCVRd2dUVCIayVsA7roRhZVWaQcyK5aTbe9jqh5ALDAftweoXwIe1hpCsGVHzqpYNR0ZZZ0phqOpLqhSlpew57ZXIWh8mLZ8b1dHYhGZjpq_RTDWCMZ5JHyfSQ_A_9xiT3vp9yGOImte0Og5O0cy6mFhryC9bN_gUwOTb485mSRxsxtu6lDKXkPuZFZ-mBBN8jAGHv70wqo-7ov_tivgDbESyLw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mukherjee, Sanchay</creator><creator>Johns, Russell T.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9522-9382</orcidid><orcidid>https://orcid.org/0000000195229382</orcidid></search><sort><creationdate>20220801</creationdate><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><author>Mukherjee, Sanchay ; Johns, Russell T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Connectivity</topic><topic>Contact angle</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Drainage</topic><topic>fluid–fluid interfacial area</topic><topic>Hydrocarbons</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>OTHER INSTRUMENTATION</topic><topic>out-of-bag predictor importance</topic><topic>Parameter sensitivity</topic><topic>Permeability</topic><topic>phase connectivity</topic><topic>Quadrants</topic><topic>relative permeability</topic><topic>Saturation</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>state function</topic><topic>Viscosity</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sanchay</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sanchay</au><au>Johns, Russell T.</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</atitle><jtitle>Energies (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>16</issue><spage>5893</spage><pages>5893-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15165893</doi><orcidid>https://orcid.org/0000-0001-9522-9382</orcidid><orcidid>https://orcid.org/0000000195229382</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2022-08, Vol.15 (16), p.5893 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_267582e101bc43c09d40990045d20d93 |
source | Publicly Available Content Database |
subjects | Algorithms Analysis Connectivity Contact angle Data mining Decision trees Drainage fluid–fluid interfacial area Hydrocarbons Learning algorithms Machine learning OTHER INSTRUMENTATION out-of-bag predictor importance Parameter sensitivity Permeability phase connectivity Quadrants relative permeability Saturation Sensitivity analysis Simulation state function Viscosity Wettability Wetting |
title | Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20of%20Fluid%E2%80%93Fluid%20Interfacial%20Area,%20Phase%20Saturation%20and%20Phase%20Connectivity%20on%20Relative%20Permeability%20Estimation%20Using%20Machine%20Learning%20Algorithms&rft.jtitle=Energies%20(Basel)&rft.au=Mukherjee,%20Sanchay&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV%20(United%20States)&rft.date=2022-08-01&rft.volume=15&rft.issue=16&rft.spage=5893&rft.pages=5893-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15165893&rft_dat=%3Cgale_doaj_%3EA745599029%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706199690&rft_id=info:pmid/&rft_galeid=A745599029&rfr_iscdi=true |