Loading…

Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms

Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-08, Vol.15 (16), p.5893
Main Authors: Mukherjee, Sanchay, Johns, Russell T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3
cites cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3
container_end_page
container_issue 16
container_start_page 5893
container_title Energies (Basel)
container_volume 15
creator Mukherjee, Sanchay
Johns, Russell T.
description Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.
doi_str_mv 10.3390/en15165893
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_267582e101bc43c09d40990045d20d93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745599029</galeid><doaj_id>oai_doaj_org_article_267582e101bc43c09d40990045d20d93</doaj_id><sourcerecordid>A745599029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</originalsourceid><addsrcrecordid>eNpNUs1uEzEQXiGQqEIvPIEFN0SKf9a76-MqaiFSEFV_ztasdzZxtLGL7VTKjXfoM_TFeBKcbgTYhxl9883nGc8UxXtGL4RQ9As6JlklGyVeFWdMqWrOaC1e_-e_Lc5j3NJ8hGBCiLPi-RZdtMk-2nQgrYPxEG0kfiBX4972v389vViydAnDAMbCSNqA8JlcbyAiuYW0D5CsdwRcfwIX3jk0J80cucExUx6RXGPYIXR2PAYuY7K7KfU-Wrcm38FsrEOyQgjuCLTj2gebNrv4rngzwBjx_GRnxf3V5d3i23z14-ty0a7mpuR1mislqZAlZbTjDQcOKBWoocKu4gOyvgHVCVRd2dUVCIayVsA7roRhZVWaQcyK5aTbe9jqh5ALDAftweoXwIe1hpCsGVHzqpYNR0ZZZ0phqOpLqhSlpew57ZXIWh8mLZ8b1dHYhGZjpq_RTDWCMZ5JHyfSQ_A_9xiT3vp9yGOImte0Og5O0cy6mFhryC9bN_gUwOTb485mSRxsxtu6lDKXkPuZFZ-mBBN8jAGHv70wqo-7ov_tivgDbESyLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706199690</pqid></control><display><type>article</type><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><source>Publicly Available Content Database</source><creator>Mukherjee, Sanchay ; Johns, Russell T.</creator><creatorcontrib>Mukherjee, Sanchay ; Johns, Russell T. ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><description>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15165893</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Connectivity ; Contact angle ; Data mining ; Decision trees ; Drainage ; fluid–fluid interfacial area ; Hydrocarbons ; Learning algorithms ; Machine learning ; OTHER INSTRUMENTATION ; out-of-bag predictor importance ; Parameter sensitivity ; Permeability ; phase connectivity ; Quadrants ; relative permeability ; Saturation ; Sensitivity analysis ; Simulation ; state function ; Viscosity ; Wettability ; Wetting</subject><ispartof>Energies (Basel), 2022-08, Vol.15 (16), p.5893</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</citedby><cites>FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</cites><orcidid>0000-0001-9522-9382 ; 0000000195229382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706199690/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706199690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1983112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sanchay</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><title>Energies (Basel)</title><description>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Connectivity</subject><subject>Contact angle</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Drainage</subject><subject>fluid–fluid interfacial area</subject><subject>Hydrocarbons</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>OTHER INSTRUMENTATION</subject><subject>out-of-bag predictor importance</subject><subject>Parameter sensitivity</subject><subject>Permeability</subject><subject>phase connectivity</subject><subject>Quadrants</subject><subject>relative permeability</subject><subject>Saturation</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>state function</subject><subject>Viscosity</subject><subject>Wettability</subject><subject>Wetting</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUs1uEzEQXiGQqEIvPIEFN0SKf9a76-MqaiFSEFV_ztasdzZxtLGL7VTKjXfoM_TFeBKcbgTYhxl9883nGc8UxXtGL4RQ9As6JlklGyVeFWdMqWrOaC1e_-e_Lc5j3NJ8hGBCiLPi-RZdtMk-2nQgrYPxEG0kfiBX4972v389vViydAnDAMbCSNqA8JlcbyAiuYW0D5CsdwRcfwIX3jk0J80cucExUx6RXGPYIXR2PAYuY7K7KfU-Wrcm38FsrEOyQgjuCLTj2gebNrv4rngzwBjx_GRnxf3V5d3i23z14-ty0a7mpuR1mislqZAlZbTjDQcOKBWoocKu4gOyvgHVCVRd2dUVCIayVsA7roRhZVWaQcyK5aTbe9jqh5ALDAftweoXwIe1hpCsGVHzqpYNR0ZZZ0phqOpLqhSlpew57ZXIWh8mLZ8b1dHYhGZjpq_RTDWCMZ5JHyfSQ_A_9xiT3vp9yGOImte0Og5O0cy6mFhryC9bN_gUwOTb485mSRxsxtu6lDKXkPuZFZ-mBBN8jAGHv70wqo-7ov_tivgDbESyLw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mukherjee, Sanchay</creator><creator>Johns, Russell T.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9522-9382</orcidid><orcidid>https://orcid.org/0000000195229382</orcidid></search><sort><creationdate>20220801</creationdate><title>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</title><author>Mukherjee, Sanchay ; Johns, Russell T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Connectivity</topic><topic>Contact angle</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Drainage</topic><topic>fluid–fluid interfacial area</topic><topic>Hydrocarbons</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>OTHER INSTRUMENTATION</topic><topic>out-of-bag predictor importance</topic><topic>Parameter sensitivity</topic><topic>Permeability</topic><topic>phase connectivity</topic><topic>Quadrants</topic><topic>relative permeability</topic><topic>Saturation</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>state function</topic><topic>Viscosity</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sanchay</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sanchay</au><au>Johns, Russell T.</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms</atitle><jtitle>Energies (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>15</volume><issue>16</issue><spage>5893</spage><pages>5893-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15165893</doi><orcidid>https://orcid.org/0000-0001-9522-9382</orcidid><orcidid>https://orcid.org/0000000195229382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-08, Vol.15 (16), p.5893
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_267582e101bc43c09d40990045d20d93
source Publicly Available Content Database
subjects Algorithms
Analysis
Connectivity
Contact angle
Data mining
Decision trees
Drainage
fluid–fluid interfacial area
Hydrocarbons
Learning algorithms
Machine learning
OTHER INSTRUMENTATION
out-of-bag predictor importance
Parameter sensitivity
Permeability
phase connectivity
Quadrants
relative permeability
Saturation
Sensitivity analysis
Simulation
state function
Viscosity
Wettability
Wetting
title Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20of%20Fluid%E2%80%93Fluid%20Interfacial%20Area,%20Phase%20Saturation%20and%20Phase%20Connectivity%20on%20Relative%20Permeability%20Estimation%20Using%20Machine%20Learning%20Algorithms&rft.jtitle=Energies%20(Basel)&rft.au=Mukherjee,%20Sanchay&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV%20(United%20States)&rft.date=2022-08-01&rft.volume=15&rft.issue=16&rft.spage=5893&rft.pages=5893-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15165893&rft_dat=%3Cgale_doaj_%3EA745599029%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-9950354010b282a2ae59a9f6eb62fe1d8a9b3e9b4b76a31e579a2b293c1464cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706199690&rft_id=info:pmid/&rft_galeid=A745599029&rfr_iscdi=true