Loading…

The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain

The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction...

Full description

Saved in:
Bibliographic Details
Published in:BMC neuroscience 2023-06, Vol.24 (1), p.32-32, Article 32
Main Authors: Ceder, Mikaela M, Weman, Hannah M, Johansson, Ebba, Henriksson, Katharina, Magnusson, Kajsa A, Roman, Erika, Lagerström, Malin C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3
cites cdi_FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3
container_end_page 32
container_issue 1
container_start_page 32
container_title BMC neuroscience
container_volume 24
creator Ceder, Mikaela M
Weman, Hannah M
Johansson, Ebba
Henriksson, Katharina
Magnusson, Kajsa A
Roman, Erika
Lagerström, Malin C
description The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction with ligand-gated ion channels composed of alpha and beta subunits. We have investigated the mRNA expression of the glycine receptor alpha 3 (Glra3) subunit in the nervous system as well as in several peripheral organs of female and male mice. Single-cell RNA sequencing (scRNA-seq) data analysis on the Zeisel et al. (2018) dataset indicated widespread but low expression of Glra3 in vesicular glutamate transporter 2 (Vglut2, Slc17a6) positive and vesicular inhibitory amino acid transporter (Viaat, Slc32a1)positive neurons of the mouse central nervous system. Highest occurrence of Glra3 expression was identified in the cortex, amygdala, and striatal regions, as well as in the hypothalamus, brainstem and spinal cord. Bulk quantitative real-time-PCR (qRT-PCR) analysis demonstrated Glra3 expression in cortex, amygdala, striatum, hypothalamus, thalamus, pituitary gland, hippocampus, cerebellum, brainstem, and spinal cord. Additionally, male mice expressed higher levels of Glra3 in all investigated brain areas compared with female mice. Lastly, RNAscope spatially validated Glra3 expression in the areas indicated by the single-cell and bulk analyses. Moreover, RNAscope analysis confirmed co-localization of Glra3 with Slc17a6 or Slc32a1 in the central nervous system areas suggested from the single-cell data. Glra3 expression is low but widespread in the mouse central nervous system. Clear sex-dependent differences have been identified, indicating higher levels of Glra3 in several telencephalic and diencephalic areas, as well as in cerebellum and brainstem, in male mice compared with female mice.
doi_str_mv 10.1186/s12868-023-00800-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_267d60dd457046ccbe8505a346e186ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751484525</galeid><doaj_id>oai_doaj_org_article_267d60dd457046ccbe8505a346e186ab</doaj_id><sourcerecordid>A751484525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3</originalsourceid><addsrcrecordid>eNp1kktv1DAUhSMEou3AH2CBLLFh0RS_4jgrNCqvShVIqLC1HPtmxqPEDnZC23-PZ6a0HSTkhS3nnO_mHt-ieEXwGSFSvEuESiFLTFmJscS4bJ4Ux4TXpKQU06ePzkfFSUobjEktOX1eHLGaCs6wOC6GqzWgVX9rnAcUwcA4hYh0P641YijN7ezdhIbvX5cIbsYIKbngUVqH64QS3JQWRvAW_ISs6zqI4A0k5DyaMlfbuc_mMCdAbdTOvyiedbpP8PJuXxQ_Pn28Ov9SXn77fHG-vCyN4HgqheaS2gaA2YaQlmtR4dwhNRjaDpOK8vz3EiSpdNNZAFnZjrWdJVITTCSwRXGx59qgN2qMbtDxVgXt1O4ixJXScXKmB0VFbQW2llc15sKYNtNwpRkXkDPWbWad7VnpGsa5PaClfm513G4qgSKU1vkxFsXpfw0f3M_lrvw8K97k5uosf7-XZ-0A1uQso-4PXIdfvFurVfitSK7Fmppkwts7Qgy_ZkiTGlwy0PfaQ85eUUkpq7mgMkvf_CPdhDn6_BZbVY0rLiv2oFrpnJDzXciFzRaqlnVFuOQVrR6COVDlZWFwJnjoXL4_MNC9wcSQUoTuvkmC1Xai1X6iVW5M7SZaNdn0-nE895a_I8z-APHh8NQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827054853</pqid></control><display><type>article</type><title>The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Ceder, Mikaela M ; Weman, Hannah M ; Johansson, Ebba ; Henriksson, Katharina ; Magnusson, Kajsa A ; Roman, Erika ; Lagerström, Malin C</creator><creatorcontrib>Ceder, Mikaela M ; Weman, Hannah M ; Johansson, Ebba ; Henriksson, Katharina ; Magnusson, Kajsa A ; Roman, Erika ; Lagerström, Malin C ; Sveriges lantbruksuniversitet</creatorcontrib><description>The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction with ligand-gated ion channels composed of alpha and beta subunits. We have investigated the mRNA expression of the glycine receptor alpha 3 (Glra3) subunit in the nervous system as well as in several peripheral organs of female and male mice. Single-cell RNA sequencing (scRNA-seq) data analysis on the Zeisel et al. (2018) dataset indicated widespread but low expression of Glra3 in vesicular glutamate transporter 2 (Vglut2, Slc17a6) positive and vesicular inhibitory amino acid transporter (Viaat, Slc32a1)positive neurons of the mouse central nervous system. Highest occurrence of Glra3 expression was identified in the cortex, amygdala, and striatal regions, as well as in the hypothalamus, brainstem and spinal cord. Bulk quantitative real-time-PCR (qRT-PCR) analysis demonstrated Glra3 expression in cortex, amygdala, striatum, hypothalamus, thalamus, pituitary gland, hippocampus, cerebellum, brainstem, and spinal cord. Additionally, male mice expressed higher levels of Glra3 in all investigated brain areas compared with female mice. Lastly, RNAscope spatially validated Glra3 expression in the areas indicated by the single-cell and bulk analyses. Moreover, RNAscope analysis confirmed co-localization of Glra3 with Slc17a6 or Slc32a1 in the central nervous system areas suggested from the single-cell data. Glra3 expression is low but widespread in the mouse central nervous system. Clear sex-dependent differences have been identified, indicating higher levels of Glra3 in several telencephalic and diencephalic areas, as well as in cerebellum and brainstem, in male mice compared with female mice.</description><identifier>ISSN: 1471-2202</identifier><identifier>EISSN: 1471-2202</identifier><identifier>DOI: 10.1186/s12868-023-00800-9</identifier><identifier>PMID: 37264306</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Amino acids ; Amygdala ; Analysis ; Animals ; Brain ; Brain - metabolism ; Brain stem ; Central nervous system ; Cerebellum ; Cortex (somatosensory) ; Datasets ; Excitability ; Female ; Females ; Gene expression ; Glra3 ; Glutamic acid transporter ; Glycine ; Glycine - metabolism ; Glycine receptors ; Hybridization ; Hypothalamus ; Ion channels ; Ion channels (ligand-gated) ; Ligands ; Localization ; Male ; Males ; Messenger RNA ; Mice ; Neostriatum ; Nervous system ; Neurons ; Neurons - metabolism ; Neurosciences ; Neurovetenskaper ; Pituitary ; Receptors, Glycine - metabolism ; RNA sequencing ; RNA, Messenger ; Sex-dependent differences ; Sexes ; Spinal cord ; Spinal Cord - metabolism ; Telencephalon ; Thalamus ; Vesicular inhibitory amino acid transporter</subject><ispartof>BMC neuroscience, 2023-06, Vol.24 (1), p.32-32, Article 32</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3</citedby><cites>FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3</cites><orcidid>0000-0001-9159-2985 ; 0000-0003-4095-6456 ; 0000-0002-5158-1912 ; 0000-0002-2210-106X ; 0000-0001-5418-8289 ; 0000-0002-9681-5129 ; 0000-0002-9086-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827054853?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37264306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-499117$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/122702$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceder, Mikaela M</creatorcontrib><creatorcontrib>Weman, Hannah M</creatorcontrib><creatorcontrib>Johansson, Ebba</creatorcontrib><creatorcontrib>Henriksson, Katharina</creatorcontrib><creatorcontrib>Magnusson, Kajsa A</creatorcontrib><creatorcontrib>Roman, Erika</creatorcontrib><creatorcontrib>Lagerström, Malin C</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain</title><title>BMC neuroscience</title><addtitle>BMC Neurosci</addtitle><description>The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction with ligand-gated ion channels composed of alpha and beta subunits. We have investigated the mRNA expression of the glycine receptor alpha 3 (Glra3) subunit in the nervous system as well as in several peripheral organs of female and male mice. Single-cell RNA sequencing (scRNA-seq) data analysis on the Zeisel et al. (2018) dataset indicated widespread but low expression of Glra3 in vesicular glutamate transporter 2 (Vglut2, Slc17a6) positive and vesicular inhibitory amino acid transporter (Viaat, Slc32a1)positive neurons of the mouse central nervous system. Highest occurrence of Glra3 expression was identified in the cortex, amygdala, and striatal regions, as well as in the hypothalamus, brainstem and spinal cord. Bulk quantitative real-time-PCR (qRT-PCR) analysis demonstrated Glra3 expression in cortex, amygdala, striatum, hypothalamus, thalamus, pituitary gland, hippocampus, cerebellum, brainstem, and spinal cord. Additionally, male mice expressed higher levels of Glra3 in all investigated brain areas compared with female mice. Lastly, RNAscope spatially validated Glra3 expression in the areas indicated by the single-cell and bulk analyses. Moreover, RNAscope analysis confirmed co-localization of Glra3 with Slc17a6 or Slc32a1 in the central nervous system areas suggested from the single-cell data. Glra3 expression is low but widespread in the mouse central nervous system. Clear sex-dependent differences have been identified, indicating higher levels of Glra3 in several telencephalic and diencephalic areas, as well as in cerebellum and brainstem, in male mice compared with female mice.</description><subject>Amino acids</subject><subject>Amygdala</subject><subject>Analysis</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain stem</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Cortex (somatosensory)</subject><subject>Datasets</subject><subject>Excitability</subject><subject>Female</subject><subject>Females</subject><subject>Gene expression</subject><subject>Glra3</subject><subject>Glutamic acid transporter</subject><subject>Glycine</subject><subject>Glycine - metabolism</subject><subject>Glycine receptors</subject><subject>Hybridization</subject><subject>Hypothalamus</subject><subject>Ion channels</subject><subject>Ion channels (ligand-gated)</subject><subject>Ligands</subject><subject>Localization</subject><subject>Male</subject><subject>Males</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Neostriatum</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Neurovetenskaper</subject><subject>Pituitary</subject><subject>Receptors, Glycine - metabolism</subject><subject>RNA sequencing</subject><subject>RNA, Messenger</subject><subject>Sex-dependent differences</subject><subject>Sexes</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Telencephalon</subject><subject>Thalamus</subject><subject>Vesicular inhibitory amino acid transporter</subject><issn>1471-2202</issn><issn>1471-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kktv1DAUhSMEou3AH2CBLLFh0RS_4jgrNCqvShVIqLC1HPtmxqPEDnZC23-PZ6a0HSTkhS3nnO_mHt-ieEXwGSFSvEuESiFLTFmJscS4bJ4Ux4TXpKQU06ePzkfFSUobjEktOX1eHLGaCs6wOC6GqzWgVX9rnAcUwcA4hYh0P641YijN7ezdhIbvX5cIbsYIKbngUVqH64QS3JQWRvAW_ISs6zqI4A0k5DyaMlfbuc_mMCdAbdTOvyiedbpP8PJuXxQ_Pn28Ov9SXn77fHG-vCyN4HgqheaS2gaA2YaQlmtR4dwhNRjaDpOK8vz3EiSpdNNZAFnZjrWdJVITTCSwRXGx59qgN2qMbtDxVgXt1O4ixJXScXKmB0VFbQW2llc15sKYNtNwpRkXkDPWbWad7VnpGsa5PaClfm513G4qgSKU1vkxFsXpfw0f3M_lrvw8K97k5uosf7-XZ-0A1uQso-4PXIdfvFurVfitSK7Fmppkwts7Qgy_ZkiTGlwy0PfaQ85eUUkpq7mgMkvf_CPdhDn6_BZbVY0rLiv2oFrpnJDzXciFzRaqlnVFuOQVrR6COVDlZWFwJnjoXL4_MNC9wcSQUoTuvkmC1Xai1X6iVW5M7SZaNdn0-nE895a_I8z-APHh8NQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ceder, Mikaela M</creator><creator>Weman, Hannah M</creator><creator>Johansson, Ebba</creator><creator>Henriksson, Katharina</creator><creator>Magnusson, Kajsa A</creator><creator>Roman, Erika</creator><creator>Lagerström, Malin C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9159-2985</orcidid><orcidid>https://orcid.org/0000-0003-4095-6456</orcidid><orcidid>https://orcid.org/0000-0002-5158-1912</orcidid><orcidid>https://orcid.org/0000-0002-2210-106X</orcidid><orcidid>https://orcid.org/0000-0001-5418-8289</orcidid><orcidid>https://orcid.org/0000-0002-9681-5129</orcidid><orcidid>https://orcid.org/0000-0002-9086-2805</orcidid></search><sort><creationdate>20230601</creationdate><title>The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain</title><author>Ceder, Mikaela M ; Weman, Hannah M ; Johansson, Ebba ; Henriksson, Katharina ; Magnusson, Kajsa A ; Roman, Erika ; Lagerström, Malin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Amygdala</topic><topic>Analysis</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain stem</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Cortex (somatosensory)</topic><topic>Datasets</topic><topic>Excitability</topic><topic>Female</topic><topic>Females</topic><topic>Gene expression</topic><topic>Glra3</topic><topic>Glutamic acid transporter</topic><topic>Glycine</topic><topic>Glycine - metabolism</topic><topic>Glycine receptors</topic><topic>Hybridization</topic><topic>Hypothalamus</topic><topic>Ion channels</topic><topic>Ion channels (ligand-gated)</topic><topic>Ligands</topic><topic>Localization</topic><topic>Male</topic><topic>Males</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Neostriatum</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Neurovetenskaper</topic><topic>Pituitary</topic><topic>Receptors, Glycine - metabolism</topic><topic>RNA sequencing</topic><topic>RNA, Messenger</topic><topic>Sex-dependent differences</topic><topic>Sexes</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Telencephalon</topic><topic>Thalamus</topic><topic>Vesicular inhibitory amino acid transporter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceder, Mikaela M</creatorcontrib><creatorcontrib>Weman, Hannah M</creatorcontrib><creatorcontrib>Johansson, Ebba</creatorcontrib><creatorcontrib>Henriksson, Katharina</creatorcontrib><creatorcontrib>Magnusson, Kajsa A</creatorcontrib><creatorcontrib>Roman, Erika</creatorcontrib><creatorcontrib>Lagerström, Malin C</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceder, Mikaela M</au><au>Weman, Hannah M</au><au>Johansson, Ebba</au><au>Henriksson, Katharina</au><au>Magnusson, Kajsa A</au><au>Roman, Erika</au><au>Lagerström, Malin C</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain</atitle><jtitle>BMC neuroscience</jtitle><addtitle>BMC Neurosci</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>32</spage><epage>32</epage><pages>32-32</pages><artnum>32</artnum><issn>1471-2202</issn><eissn>1471-2202</eissn><abstract>The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction with ligand-gated ion channels composed of alpha and beta subunits. We have investigated the mRNA expression of the glycine receptor alpha 3 (Glra3) subunit in the nervous system as well as in several peripheral organs of female and male mice. Single-cell RNA sequencing (scRNA-seq) data analysis on the Zeisel et al. (2018) dataset indicated widespread but low expression of Glra3 in vesicular glutamate transporter 2 (Vglut2, Slc17a6) positive and vesicular inhibitory amino acid transporter (Viaat, Slc32a1)positive neurons of the mouse central nervous system. Highest occurrence of Glra3 expression was identified in the cortex, amygdala, and striatal regions, as well as in the hypothalamus, brainstem and spinal cord. Bulk quantitative real-time-PCR (qRT-PCR) analysis demonstrated Glra3 expression in cortex, amygdala, striatum, hypothalamus, thalamus, pituitary gland, hippocampus, cerebellum, brainstem, and spinal cord. Additionally, male mice expressed higher levels of Glra3 in all investigated brain areas compared with female mice. Lastly, RNAscope spatially validated Glra3 expression in the areas indicated by the single-cell and bulk analyses. Moreover, RNAscope analysis confirmed co-localization of Glra3 with Slc17a6 or Slc32a1 in the central nervous system areas suggested from the single-cell data. Glra3 expression is low but widespread in the mouse central nervous system. Clear sex-dependent differences have been identified, indicating higher levels of Glra3 in several telencephalic and diencephalic areas, as well as in cerebellum and brainstem, in male mice compared with female mice.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37264306</pmid><doi>10.1186/s12868-023-00800-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9159-2985</orcidid><orcidid>https://orcid.org/0000-0003-4095-6456</orcidid><orcidid>https://orcid.org/0000-0002-5158-1912</orcidid><orcidid>https://orcid.org/0000-0002-2210-106X</orcidid><orcidid>https://orcid.org/0000-0001-5418-8289</orcidid><orcidid>https://orcid.org/0000-0002-9681-5129</orcidid><orcidid>https://orcid.org/0000-0002-9086-2805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2202
ispartof BMC neuroscience, 2023-06, Vol.24 (1), p.32-32, Article 32
issn 1471-2202
1471-2202
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_267d60dd457046ccbe8505a346e186ab
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Amino acids
Amygdala
Analysis
Animals
Brain
Brain - metabolism
Brain stem
Central nervous system
Cerebellum
Cortex (somatosensory)
Datasets
Excitability
Female
Females
Gene expression
Glra3
Glutamic acid transporter
Glycine
Glycine - metabolism
Glycine receptors
Hybridization
Hypothalamus
Ion channels
Ion channels (ligand-gated)
Ligands
Localization
Male
Males
Messenger RNA
Mice
Neostriatum
Nervous system
Neurons
Neurons - metabolism
Neurosciences
Neurovetenskaper
Pituitary
Receptors, Glycine - metabolism
RNA sequencing
RNA, Messenger
Sex-dependent differences
Sexes
Spinal cord
Spinal Cord - metabolism
Telencephalon
Thalamus
Vesicular inhibitory amino acid transporter
title The glycine receptor alpha 3 subunit mRNA expression shows sex-dependent differences in the adult mouse brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20glycine%20receptor%20alpha%203%20subunit%20mRNA%20expression%20shows%20sex-dependent%20differences%20in%20the%20adult%20mouse%20brain&rft.jtitle=BMC%20neuroscience&rft.au=Ceder,%20Mikaela%20M&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2023-06-01&rft.volume=24&rft.issue=1&rft.spage=32&rft.epage=32&rft.pages=32-32&rft.artnum=32&rft.issn=1471-2202&rft.eissn=1471-2202&rft_id=info:doi/10.1186/s12868-023-00800-9&rft_dat=%3Cgale_doaj_%3EA751484525%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c640t-6a482d9ee3d911b4a6500082c0ebf015246438e815a9fdee85df3bfd18a1018e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827054853&rft_id=info:pmid/37264306&rft_galeid=A751484525&rfr_iscdi=true