Loading…
Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration
In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiati...
Saved in:
Published in: | Machines (Basel) 2024-02, Vol.12 (2), p.128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53 |
container_end_page | |
container_issue | 2 |
container_start_page | 128 |
container_title | Machines (Basel) |
container_volume | 12 |
creator | Wehrle, Erich Gufler, Veit |
description | In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics. |
doi_str_mv | 10.3390/machines12020128 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833</doaj_id><sourcerecordid>2931002950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</originalsourceid><addsrcrecordid>eNpdUU1LxDAULKLgot49BjxXk7w2aY-y68fCgoJ6Dmny6mZpG02isv4r_4i_yborIr7LPIZhHm8my44ZPQWo6VmvzdINGBmnnDJe7WQTTmWZM0n57p99PzuKcUXHqRlURTXJwvmgu3VyRnfkDofoknt1aU02dHSR-JbM1oPunSG3wTcd9pG8ubQkMxfQpBHaFgMOyenk_PCtv8IBg-7cO9r884Pcux7JfEj4GDaSw2yv1V3Eox88yB4uL-6n1_ni5mo-PV_kBoCnHKgANBpt1YCojGASKiuh4VZaoKbkQKWg1vBWCtEAQ265bZksDKuhMCUcZPOtr_V6pZ6C63VYK6-d2hA-PCodxs87VFxILJpSGmNFwYSuJLSsMqC1GFMCGL1Otl5PwT-_YExq5V_CmFFUvAZGKa9LOqroVmWCjzFg-3uVUfVdlPpfFHwBrkGIww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931002950</pqid></control><display><type>article</type><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><source>ProQuest - Publicly Available Content Database</source><creator>Wehrle, Erich ; Gufler, Veit</creator><creatorcontrib>Wehrle, Erich ; Gufler, Veit</creatorcontrib><description>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</description><identifier>ISSN: 2075-1702</identifier><identifier>EISSN: 2075-1702</identifier><identifier>DOI: 10.3390/machines12020128</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Design optimization ; Differentiation ; flexible multibody dynamics ; Mathematical analysis ; Methods ; Random variables ; Sensitivity analysis ; structural dynamics ; Time integration</subject><ispartof>Machines (Basel), 2024-02, Vol.12 (2), p.128</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</cites><orcidid>0000-0002-3349-2406 ; 0000-0002-5760-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2931002950/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931002950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Wehrle, Erich</creatorcontrib><creatorcontrib>Gufler, Veit</creatorcontrib><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><title>Machines (Basel)</title><description>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</description><subject>Design optimization</subject><subject>Differentiation</subject><subject>flexible multibody dynamics</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Random variables</subject><subject>Sensitivity analysis</subject><subject>structural dynamics</subject><subject>Time integration</subject><issn>2075-1702</issn><issn>2075-1702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1LxDAULKLgot49BjxXk7w2aY-y68fCgoJ6Dmny6mZpG02isv4r_4i_yborIr7LPIZhHm8my44ZPQWo6VmvzdINGBmnnDJe7WQTTmWZM0n57p99PzuKcUXHqRlURTXJwvmgu3VyRnfkDofoknt1aU02dHSR-JbM1oPunSG3wTcd9pG8ubQkMxfQpBHaFgMOyenk_PCtv8IBg-7cO9r884Pcux7JfEj4GDaSw2yv1V3Eox88yB4uL-6n1_ni5mo-PV_kBoCnHKgANBpt1YCojGASKiuh4VZaoKbkQKWg1vBWCtEAQ265bZksDKuhMCUcZPOtr_V6pZ6C63VYK6-d2hA-PCodxs87VFxILJpSGmNFwYSuJLSsMqC1GFMCGL1Otl5PwT-_YExq5V_CmFFUvAZGKa9LOqroVmWCjzFg-3uVUfVdlPpfFHwBrkGIww</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wehrle, Erich</creator><creator>Gufler, Veit</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3349-2406</orcidid><orcidid>https://orcid.org/0000-0002-5760-4468</orcidid></search><sort><creationdate>20240201</creationdate><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><author>Wehrle, Erich ; Gufler, Veit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Differentiation</topic><topic>flexible multibody dynamics</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Random variables</topic><topic>Sensitivity analysis</topic><topic>structural dynamics</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrle, Erich</creatorcontrib><creatorcontrib>Gufler, Veit</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrle, Erich</au><au>Gufler, Veit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</atitle><jtitle>Machines (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>128</spage><pages>128-</pages><issn>2075-1702</issn><eissn>2075-1702</eissn><abstract>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/machines12020128</doi><orcidid>https://orcid.org/0000-0002-3349-2406</orcidid><orcidid>https://orcid.org/0000-0002-5760-4468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1702 |
ispartof | Machines (Basel), 2024-02, Vol.12 (2), p.128 |
issn | 2075-1702 2075-1702 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833 |
source | ProQuest - Publicly Available Content Database |
subjects | Design optimization Differentiation flexible multibody dynamics Mathematical analysis Methods Random variables Sensitivity analysis structural dynamics Time integration |
title | Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Sensitivity%20Analysis%20of%20Dynamic%20Problems%20with%20Direct%20Differentiation%20of%20Generalized-%CE%B1%20Time%20Integration&rft.jtitle=Machines%20(Basel)&rft.au=Wehrle,%20Erich&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=128&rft.pages=128-&rft.issn=2075-1702&rft.eissn=2075-1702&rft_id=info:doi/10.3390/machines12020128&rft_dat=%3Cproquest_doaj_%3E2931002950%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931002950&rft_id=info:pmid/&rfr_iscdi=true |