Loading…

Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration

In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiati...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) 2024-02, Vol.12 (2), p.128
Main Authors: Wehrle, Erich, Gufler, Veit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53
container_end_page
container_issue 2
container_start_page 128
container_title Machines (Basel)
container_volume 12
creator Wehrle, Erich
Gufler, Veit
description In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.
doi_str_mv 10.3390/machines12020128
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833</doaj_id><sourcerecordid>2931002950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</originalsourceid><addsrcrecordid>eNpdUU1LxDAULKLgot49BjxXk7w2aY-y68fCgoJ6Dmny6mZpG02isv4r_4i_yborIr7LPIZhHm8my44ZPQWo6VmvzdINGBmnnDJe7WQTTmWZM0n57p99PzuKcUXHqRlURTXJwvmgu3VyRnfkDofoknt1aU02dHSR-JbM1oPunSG3wTcd9pG8ubQkMxfQpBHaFgMOyenk_PCtv8IBg-7cO9r884Pcux7JfEj4GDaSw2yv1V3Eox88yB4uL-6n1_ni5mo-PV_kBoCnHKgANBpt1YCojGASKiuh4VZaoKbkQKWg1vBWCtEAQ265bZksDKuhMCUcZPOtr_V6pZ6C63VYK6-d2hA-PCodxs87VFxILJpSGmNFwYSuJLSsMqC1GFMCGL1Otl5PwT-_YExq5V_CmFFUvAZGKa9LOqroVmWCjzFg-3uVUfVdlPpfFHwBrkGIww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931002950</pqid></control><display><type>article</type><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><source>ProQuest - Publicly Available Content Database</source><creator>Wehrle, Erich ; Gufler, Veit</creator><creatorcontrib>Wehrle, Erich ; Gufler, Veit</creatorcontrib><description>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</description><identifier>ISSN: 2075-1702</identifier><identifier>EISSN: 2075-1702</identifier><identifier>DOI: 10.3390/machines12020128</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Design optimization ; Differentiation ; flexible multibody dynamics ; Mathematical analysis ; Methods ; Random variables ; Sensitivity analysis ; structural dynamics ; Time integration</subject><ispartof>Machines (Basel), 2024-02, Vol.12 (2), p.128</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</cites><orcidid>0000-0002-3349-2406 ; 0000-0002-5760-4468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2931002950/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931002950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Wehrle, Erich</creatorcontrib><creatorcontrib>Gufler, Veit</creatorcontrib><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><title>Machines (Basel)</title><description>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</description><subject>Design optimization</subject><subject>Differentiation</subject><subject>flexible multibody dynamics</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Random variables</subject><subject>Sensitivity analysis</subject><subject>structural dynamics</subject><subject>Time integration</subject><issn>2075-1702</issn><issn>2075-1702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1LxDAULKLgot49BjxXk7w2aY-y68fCgoJ6Dmny6mZpG02isv4r_4i_yborIr7LPIZhHm8my44ZPQWo6VmvzdINGBmnnDJe7WQTTmWZM0n57p99PzuKcUXHqRlURTXJwvmgu3VyRnfkDofoknt1aU02dHSR-JbM1oPunSG3wTcd9pG8ubQkMxfQpBHaFgMOyenk_PCtv8IBg-7cO9r884Pcux7JfEj4GDaSw2yv1V3Eox88yB4uL-6n1_ni5mo-PV_kBoCnHKgANBpt1YCojGASKiuh4VZaoKbkQKWg1vBWCtEAQ265bZksDKuhMCUcZPOtr_V6pZ6C63VYK6-d2hA-PCodxs87VFxILJpSGmNFwYSuJLSsMqC1GFMCGL1Otl5PwT-_YExq5V_CmFFUvAZGKa9LOqroVmWCjzFg-3uVUfVdlPpfFHwBrkGIww</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wehrle, Erich</creator><creator>Gufler, Veit</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3349-2406</orcidid><orcidid>https://orcid.org/0000-0002-5760-4468</orcidid></search><sort><creationdate>20240201</creationdate><title>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</title><author>Wehrle, Erich ; Gufler, Veit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Differentiation</topic><topic>flexible multibody dynamics</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Random variables</topic><topic>Sensitivity analysis</topic><topic>structural dynamics</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrle, Erich</creatorcontrib><creatorcontrib>Gufler, Veit</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrle, Erich</au><au>Gufler, Veit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration</atitle><jtitle>Machines (Basel)</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>128</spage><pages>128-</pages><issn>2075-1702</issn><eissn>2075-1702</eissn><abstract>In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/machines12020128</doi><orcidid>https://orcid.org/0000-0002-3349-2406</orcidid><orcidid>https://orcid.org/0000-0002-5760-4468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1702
ispartof Machines (Basel), 2024-02, Vol.12 (2), p.128
issn 2075-1702
2075-1702
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_267e4b57ccd6416a873f18c3aa684833
source ProQuest - Publicly Available Content Database
subjects Design optimization
Differentiation
flexible multibody dynamics
Mathematical analysis
Methods
Random variables
Sensitivity analysis
structural dynamics
Time integration
title Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-α Time Integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Sensitivity%20Analysis%20of%20Dynamic%20Problems%20with%20Direct%20Differentiation%20of%20Generalized-%CE%B1%20Time%20Integration&rft.jtitle=Machines%20(Basel)&rft.au=Wehrle,%20Erich&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=128&rft.pages=128-&rft.issn=2075-1702&rft.eissn=2075-1702&rft_id=info:doi/10.3390/machines12020128&rft_dat=%3Cproquest_doaj_%3E2931002950%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-3063ecaed8b368c61738d73b2d7d30c5230760dc2f766b31e2d2df174c1934c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931002950&rft_id=info:pmid/&rfr_iscdi=true