Loading…

Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method

Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.%, 6.0 wt.%, and 9.0 wt.% nano-AlN-particles-reinforced AA6061 (nano-AlN/AA6061) composites were successfully prepared by pressure infiltration technique and then hot extruded (HE) at 500 °C. The microstruct...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (13), p.2258
Main Authors: Sun, Kai, Zhu, Ping, Zhang, Pinliang, Zhang, Qiang, Shao, Puzhen, Wang, Zhijun, Yang, Wenshu, Zhao, Dashuai, Balog, Martin, Krizik, Peter, Wu, Gaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3
cites cdi_FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3
container_end_page
container_issue 13
container_start_page 2258
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Sun, Kai
Zhu, Ping
Zhang, Pinliang
Zhang, Qiang
Shao, Puzhen
Wang, Zhijun
Yang, Wenshu
Zhao, Dashuai
Balog, Martin
Krizik, Peter
Wu, Gaohui
description Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.%, 6.0 wt.%, and 9.0 wt.% nano-AlN-particles-reinforced AA6061 (nano-AlN/AA6061) composites were successfully prepared by pressure infiltration technique and then hot extruded (HE) at 500 °C. The microstructural characterization of the composites after HE show that the grain structure of the Al matrix is significantly refined, varying from 2 to 20 μm down to 1 to 3 μm. Nano-AlN particles in the composites are agglomerated around the matrix, and the distribution of nano-AlN is improved after HE. The interface between AA6061 and nano-AlN is clean and smooth, without interface reaction products. The 3.0 wt.% nano-AlN/AA6061 composite shows an uppermost yield and supreme tensile strength of 333 MPa and 445 MPa, respectively. The results show that the deformation procedure of the composite is beneficial to the further dispersion of nano-AlN particles and improves the strength of nano-AlN/AA6061 composite. At the same time, the strengthening mechanism active in the composites was discussed.
doi_str_mv 10.3390/nano12132258
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26949bdbed9e45769e346fe03835ae00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_26949bdbed9e45769e346fe03835ae00</doaj_id><sourcerecordid>2687717490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3</originalsourceid><addsrcrecordid>eNpdkktv1DAQxyMEolXpjQ8QiQsHQu3Y8eOCtFpeK5XCASRulh_j1qusHewEqd8eh12hFl_Gj__85j_WNM1LjN4SItFV1DHhHpO-H8ST5rxHXHZUSvz0wf6suSxlj-qSmIiBPG_OyCCQQJKeNz_fhzJBLiHFVkfXfssw6azn9Zx8e1P53Wa8udpsGGK43abDlEqYobTmfhWXsmRod9GHcT6lfYH5LrkXzTOvxwKXp3jR_Pj44fv2c3f99dNuu7nuLB2GuWO2BwkEyMCx5gzz3lrPNXfIAjjupNXEGyywwc5jYbSQBgzV1lU_Xjpy0eyOXJf0Xk05HHS-V0kH9fci5Vul8xzsCKpnkkrjDDgJdOCs1qXMAyKCDBoQqqx3R9a0mAM4C7H2ND6CPn6J4U7dpt9K9kxgQSvg9QmQ068FyqwOoVgYRx0hLaU6EJxjTuVa69V_0n1acqxftaoYlghzXFVvjiqbUykZ_D8zGKl1AtTDCSB_APqposs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686190171</pqid></control><display><type>article</type><title>Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Kai ; Zhu, Ping ; Zhang, Pinliang ; Zhang, Qiang ; Shao, Puzhen ; Wang, Zhijun ; Yang, Wenshu ; Zhao, Dashuai ; Balog, Martin ; Krizik, Peter ; Wu, Gaohui</creator><creatorcontrib>Sun, Kai ; Zhu, Ping ; Zhang, Pinliang ; Zhang, Qiang ; Shao, Puzhen ; Wang, Zhijun ; Yang, Wenshu ; Zhao, Dashuai ; Balog, Martin ; Krizik, Peter ; Wu, Gaohui</creatorcontrib><description>Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.%, 6.0 wt.%, and 9.0 wt.% nano-AlN-particles-reinforced AA6061 (nano-AlN/AA6061) composites were successfully prepared by pressure infiltration technique and then hot extruded (HE) at 500 °C. The microstructural characterization of the composites after HE show that the grain structure of the Al matrix is significantly refined, varying from 2 to 20 μm down to 1 to 3 μm. Nano-AlN particles in the composites are agglomerated around the matrix, and the distribution of nano-AlN is improved after HE. The interface between AA6061 and nano-AlN is clean and smooth, without interface reaction products. The 3.0 wt.% nano-AlN/AA6061 composite shows an uppermost yield and supreme tensile strength of 333 MPa and 445 MPa, respectively. The results show that the deformation procedure of the composite is beneficial to the further dispersion of nano-AlN particles and improves the strength of nano-AlN/AA6061 composite. At the same time, the strengthening mechanism active in the composites was discussed.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12132258</identifier><identifier>PMID: 35808094</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum base alloys ; Aluminum nitride ; Composite materials ; dispersion ; Extrusion ; Grain structure ; Graphene ; hot extrusion ; Hot pressing ; Infiltration ; Interface reactions ; Mechanical properties ; Metal matrix composites ; Methods ; MMC ; Morphology ; nano-AlN ; Nanomaterials ; Nanotechnology ; Particle size ; Particulate composites ; Powder metallurgy ; pressure infiltration ; Process controls ; Reaction products ; Spectrum analysis ; Tensile strength</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (13), p.2258</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3</citedby><cites>FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3</cites><orcidid>0000-0003-1486-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686190171/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686190171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Zhang, Pinliang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Shao, Puzhen</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Yang, Wenshu</creatorcontrib><creatorcontrib>Zhao, Dashuai</creatorcontrib><creatorcontrib>Balog, Martin</creatorcontrib><creatorcontrib>Krizik, Peter</creatorcontrib><creatorcontrib>Wu, Gaohui</creatorcontrib><title>Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method</title><title>Nanomaterials (Basel, Switzerland)</title><description>Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.%, 6.0 wt.%, and 9.0 wt.% nano-AlN-particles-reinforced AA6061 (nano-AlN/AA6061) composites were successfully prepared by pressure infiltration technique and then hot extruded (HE) at 500 °C. The microstructural characterization of the composites after HE show that the grain structure of the Al matrix is significantly refined, varying from 2 to 20 μm down to 1 to 3 μm. Nano-AlN particles in the composites are agglomerated around the matrix, and the distribution of nano-AlN is improved after HE. The interface between AA6061 and nano-AlN is clean and smooth, without interface reaction products. The 3.0 wt.% nano-AlN/AA6061 composite shows an uppermost yield and supreme tensile strength of 333 MPa and 445 MPa, respectively. The results show that the deformation procedure of the composite is beneficial to the further dispersion of nano-AlN particles and improves the strength of nano-AlN/AA6061 composite. At the same time, the strengthening mechanism active in the composites was discussed.</description><subject>Aluminum base alloys</subject><subject>Aluminum nitride</subject><subject>Composite materials</subject><subject>dispersion</subject><subject>Extrusion</subject><subject>Grain structure</subject><subject>Graphene</subject><subject>hot extrusion</subject><subject>Hot pressing</subject><subject>Infiltration</subject><subject>Interface reactions</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Methods</subject><subject>MMC</subject><subject>Morphology</subject><subject>nano-AlN</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Powder metallurgy</subject><subject>pressure infiltration</subject><subject>Process controls</subject><subject>Reaction products</subject><subject>Spectrum analysis</subject><subject>Tensile strength</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAQxyMEolXpjQ8QiQsHQu3Y8eOCtFpeK5XCASRulh_j1qusHewEqd8eh12hFl_Gj__85j_WNM1LjN4SItFV1DHhHpO-H8ST5rxHXHZUSvz0wf6suSxlj-qSmIiBPG_OyCCQQJKeNz_fhzJBLiHFVkfXfssw6azn9Zx8e1P53Wa8udpsGGK43abDlEqYobTmfhWXsmRod9GHcT6lfYH5LrkXzTOvxwKXp3jR_Pj44fv2c3f99dNuu7nuLB2GuWO2BwkEyMCx5gzz3lrPNXfIAjjupNXEGyywwc5jYbSQBgzV1lU_Xjpy0eyOXJf0Xk05HHS-V0kH9fci5Vul8xzsCKpnkkrjDDgJdOCs1qXMAyKCDBoQqqx3R9a0mAM4C7H2ND6CPn6J4U7dpt9K9kxgQSvg9QmQ068FyqwOoVgYRx0hLaU6EJxjTuVa69V_0n1acqxftaoYlghzXFVvjiqbUykZ_D8zGKl1AtTDCSB_APqposs</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Sun, Kai</creator><creator>Zhu, Ping</creator><creator>Zhang, Pinliang</creator><creator>Zhang, Qiang</creator><creator>Shao, Puzhen</creator><creator>Wang, Zhijun</creator><creator>Yang, Wenshu</creator><creator>Zhao, Dashuai</creator><creator>Balog, Martin</creator><creator>Krizik, Peter</creator><creator>Wu, Gaohui</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1486-358X</orcidid></search><sort><creationdate>20220630</creationdate><title>Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method</title><author>Sun, Kai ; Zhu, Ping ; Zhang, Pinliang ; Zhang, Qiang ; Shao, Puzhen ; Wang, Zhijun ; Yang, Wenshu ; Zhao, Dashuai ; Balog, Martin ; Krizik, Peter ; Wu, Gaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum base alloys</topic><topic>Aluminum nitride</topic><topic>Composite materials</topic><topic>dispersion</topic><topic>Extrusion</topic><topic>Grain structure</topic><topic>Graphene</topic><topic>hot extrusion</topic><topic>Hot pressing</topic><topic>Infiltration</topic><topic>Interface reactions</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Methods</topic><topic>MMC</topic><topic>Morphology</topic><topic>nano-AlN</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Powder metallurgy</topic><topic>pressure infiltration</topic><topic>Process controls</topic><topic>Reaction products</topic><topic>Spectrum analysis</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhu, Ping</creatorcontrib><creatorcontrib>Zhang, Pinliang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Shao, Puzhen</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Yang, Wenshu</creatorcontrib><creatorcontrib>Zhao, Dashuai</creatorcontrib><creatorcontrib>Balog, Martin</creatorcontrib><creatorcontrib>Krizik, Peter</creatorcontrib><creatorcontrib>Wu, Gaohui</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kai</au><au>Zhu, Ping</au><au>Zhang, Pinliang</au><au>Zhang, Qiang</au><au>Shao, Puzhen</au><au>Wang, Zhijun</au><au>Yang, Wenshu</au><au>Zhao, Dashuai</au><au>Balog, Martin</au><au>Krizik, Peter</au><au>Wu, Gaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>12</volume><issue>13</issue><spage>2258</spage><pages>2258-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.%, 6.0 wt.%, and 9.0 wt.% nano-AlN-particles-reinforced AA6061 (nano-AlN/AA6061) composites were successfully prepared by pressure infiltration technique and then hot extruded (HE) at 500 °C. The microstructural characterization of the composites after HE show that the grain structure of the Al matrix is significantly refined, varying from 2 to 20 μm down to 1 to 3 μm. Nano-AlN particles in the composites are agglomerated around the matrix, and the distribution of nano-AlN is improved after HE. The interface between AA6061 and nano-AlN is clean and smooth, without interface reaction products. The 3.0 wt.% nano-AlN/AA6061 composite shows an uppermost yield and supreme tensile strength of 333 MPa and 445 MPa, respectively. The results show that the deformation procedure of the composite is beneficial to the further dispersion of nano-AlN particles and improves the strength of nano-AlN/AA6061 composite. At the same time, the strengthening mechanism active in the composites was discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35808094</pmid><doi>10.3390/nano12132258</doi><orcidid>https://orcid.org/0000-0003-1486-358X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (13), p.2258
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_26949bdbed9e45769e346fe03835ae00
source Publicly Available Content Database; PubMed Central
subjects Aluminum base alloys
Aluminum nitride
Composite materials
dispersion
Extrusion
Grain structure
Graphene
hot extrusion
Hot pressing
Infiltration
Interface reactions
Mechanical properties
Metal matrix composites
Methods
MMC
Morphology
nano-AlN
Nanomaterials
Nanotechnology
Particle size
Particulate composites
Powder metallurgy
pressure infiltration
Process controls
Reaction products
Spectrum analysis
Tensile strength
title Dispersion and Preparation of Nano-AlN/AA6061 Composites by Pressure Infiltration Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20and%20Preparation%20of%20Nano-AlN/AA6061%20Composites%20by%20Pressure%20Infiltration%20Method&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Sun,%20Kai&rft.date=2022-06-30&rft.volume=12&rft.issue=13&rft.spage=2258&rft.pages=2258-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12132258&rft_dat=%3Cproquest_doaj_%3E2687717490%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-6c2e9e3e3571a76172ccf7a7d0ceed7d9ca3fb181b1df18ba89beb4acd606f9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686190171&rft_id=info:pmid/35808094&rfr_iscdi=true