Loading…

Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning

Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic...

Full description

Saved in:
Bibliographic Details
Published in:Bone Reports 2021-06, Vol.14, p.101070-101070, Article 101070
Main Authors: Nissinen, Tomi, Suoranta, Sanna, Saavalainen, Taavi, Sund, Reijo, Hurskainen, Ossi, Rikkonen, Toni, Kröger, Heikki, Lähivaara, Timo, Väänänen, Sami P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3
cites cdi_FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3
container_end_page 101070
container_issue
container_start_page 101070
container_title Bone Reports
container_volume 14
creator Nissinen, Tomi
Suoranta, Sanna
Saavalainen, Taavi
Sund, Reijo
Hurskainen, Ossi
Rikkonen, Toni
Kröger, Heikki
Lähivaara, Timo
Väänänen, Sami P.
description Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but are often neglected in lumbar spine DXA analysis. In addition, we tested the approach's ability to predict fractures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Prevention Study was used to train a convolutional neural network (CNN) for classification. The model was able to classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD measurements was 0.94. In each classification task, neural network visualizations indicated the model's predictive strategy. We conclude that deep learning could complement the well established DXA method for osteoporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in the future.
doi_str_mv 10.1016/j.bonr.2021.101070
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_269a660dff4141c79db473c488914663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352187221003259</els_id><doaj_id>oai_doaj_org_article_269a660dff4141c79db473c488914663</doaj_id><sourcerecordid>2528432247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3</originalsourceid><addsrcrecordid>eNp9kktv1DAQxy0EotXSL8AB-cgli1-JYwkhofKqVIkLSNwsxx6nXrJxsJNKe-C745BStRdO9rx-M5r5I_SSkj0ltHlz2HdxTHtGGF0dRJIn6JzxmlW0lezpg_8Zusj5QAihtRJSqefojHOlJBXyHP3-ADPYOYw9nsx8E4fYB2sG7MHMS4KMzejwlMCFLcknY9cATiH_LFY8YreYoYIRUn_CP6pkTth0OaZpDvEIczrhcDR9IS15BTiACQ9g0lisF-iZN0OGi7t3h75_-vjt8kt1_fXz1eX768rWjM6VIlbaWgJ1zErPvLWMkZbUjMtOeel423Bbq7o4Oka6xinWUuUb4kTDuQe-Q1cb10Vz0FMqE6WTjibov46Yem3SHOwAmjXKNKXSe0EFtVK5TkhuRdsqKpqC26F3G2tauiM4C-OczPAI-jgyhhvdx1vdUsIEWQGv7wAp_logz_oYsoVhMCPEJWtWs1ZwxkrbHWJbqk0x5wT-vg0lepWBPuhVBnqVgd5kUIpePRzwvuTf0UvC2y0ByspvAySdbYDRliOnooWyk_A__h959MVq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528432247</pqid></control><display><type>article</type><title>Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Nissinen, Tomi ; Suoranta, Sanna ; Saavalainen, Taavi ; Sund, Reijo ; Hurskainen, Ossi ; Rikkonen, Toni ; Kröger, Heikki ; Lähivaara, Timo ; Väänänen, Sami P.</creator><creatorcontrib>Nissinen, Tomi ; Suoranta, Sanna ; Saavalainen, Taavi ; Sund, Reijo ; Hurskainen, Ossi ; Rikkonen, Toni ; Kröger, Heikki ; Lähivaara, Timo ; Väänänen, Sami P.</creatorcontrib><description>Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but are often neglected in lumbar spine DXA analysis. In addition, we tested the approach's ability to predict fractures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Prevention Study was used to train a convolutional neural network (CNN) for classification. The model was able to classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD measurements was 0.94. In each classification task, neural network visualizations indicated the model's predictive strategy. We conclude that deep learning could complement the well established DXA method for osteoporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in the future.</description><identifier>ISSN: 2352-1872</identifier><identifier>EISSN: 2352-1872</identifier><identifier>DOI: 10.1016/j.bonr.2021.101070</identifier><identifier>PMID: 33997147</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Deep learning ; Degeneration ; Dual-energy X-ray absorptiometry ; Fracture risk ; Lumbar spine ; Scoliosis ; Trabecular bone score</subject><ispartof>Bone Reports, 2021-06, Vol.14, p.101070-101070, Article 101070</ispartof><rights>2021 The Author(s)</rights><rights>2021 The Author(s).</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3</citedby><cites>FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352187221003259$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33997147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nissinen, Tomi</creatorcontrib><creatorcontrib>Suoranta, Sanna</creatorcontrib><creatorcontrib>Saavalainen, Taavi</creatorcontrib><creatorcontrib>Sund, Reijo</creatorcontrib><creatorcontrib>Hurskainen, Ossi</creatorcontrib><creatorcontrib>Rikkonen, Toni</creatorcontrib><creatorcontrib>Kröger, Heikki</creatorcontrib><creatorcontrib>Lähivaara, Timo</creatorcontrib><creatorcontrib>Väänänen, Sami P.</creatorcontrib><title>Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning</title><title>Bone Reports</title><addtitle>Bone Rep</addtitle><description>Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but are often neglected in lumbar spine DXA analysis. In addition, we tested the approach's ability to predict fractures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Prevention Study was used to train a convolutional neural network (CNN) for classification. The model was able to classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD measurements was 0.94. In each classification task, neural network visualizations indicated the model's predictive strategy. We conclude that deep learning could complement the well established DXA method for osteoporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in the future.</description><subject>Deep learning</subject><subject>Degeneration</subject><subject>Dual-energy X-ray absorptiometry</subject><subject>Fracture risk</subject><subject>Lumbar spine</subject><subject>Scoliosis</subject><subject>Trabecular bone score</subject><issn>2352-1872</issn><issn>2352-1872</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kktv1DAQxy0EotXSL8AB-cgli1-JYwkhofKqVIkLSNwsxx6nXrJxsJNKe-C745BStRdO9rx-M5r5I_SSkj0ltHlz2HdxTHtGGF0dRJIn6JzxmlW0lezpg_8Zusj5QAihtRJSqefojHOlJBXyHP3-ADPYOYw9nsx8E4fYB2sG7MHMS4KMzejwlMCFLcknY9cATiH_LFY8YreYoYIRUn_CP6pkTth0OaZpDvEIczrhcDR9IS15BTiACQ9g0lisF-iZN0OGi7t3h75_-vjt8kt1_fXz1eX768rWjM6VIlbaWgJ1zErPvLWMkZbUjMtOeel423Bbq7o4Oka6xinWUuUb4kTDuQe-Q1cb10Vz0FMqE6WTjibov46Yem3SHOwAmjXKNKXSe0EFtVK5TkhuRdsqKpqC26F3G2tauiM4C-OczPAI-jgyhhvdx1vdUsIEWQGv7wAp_logz_oYsoVhMCPEJWtWs1ZwxkrbHWJbqk0x5wT-vg0lepWBPuhVBnqVgd5kUIpePRzwvuTf0UvC2y0ByspvAySdbYDRliOnooWyk_A__h959MVq</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nissinen, Tomi</creator><creator>Suoranta, Sanna</creator><creator>Saavalainen, Taavi</creator><creator>Sund, Reijo</creator><creator>Hurskainen, Ossi</creator><creator>Rikkonen, Toni</creator><creator>Kröger, Heikki</creator><creator>Lähivaara, Timo</creator><creator>Väänänen, Sami P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210601</creationdate><title>Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning</title><author>Nissinen, Tomi ; Suoranta, Sanna ; Saavalainen, Taavi ; Sund, Reijo ; Hurskainen, Ossi ; Rikkonen, Toni ; Kröger, Heikki ; Lähivaara, Timo ; Väänänen, Sami P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Degeneration</topic><topic>Dual-energy X-ray absorptiometry</topic><topic>Fracture risk</topic><topic>Lumbar spine</topic><topic>Scoliosis</topic><topic>Trabecular bone score</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nissinen, Tomi</creatorcontrib><creatorcontrib>Suoranta, Sanna</creatorcontrib><creatorcontrib>Saavalainen, Taavi</creatorcontrib><creatorcontrib>Sund, Reijo</creatorcontrib><creatorcontrib>Hurskainen, Ossi</creatorcontrib><creatorcontrib>Rikkonen, Toni</creatorcontrib><creatorcontrib>Kröger, Heikki</creatorcontrib><creatorcontrib>Lähivaara, Timo</creatorcontrib><creatorcontrib>Väänänen, Sami P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Bone Reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nissinen, Tomi</au><au>Suoranta, Sanna</au><au>Saavalainen, Taavi</au><au>Sund, Reijo</au><au>Hurskainen, Ossi</au><au>Rikkonen, Toni</au><au>Kröger, Heikki</au><au>Lähivaara, Timo</au><au>Väänänen, Sami P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning</atitle><jtitle>Bone Reports</jtitle><addtitle>Bone Rep</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>14</volume><spage>101070</spage><epage>101070</epage><pages>101070-101070</pages><artnum>101070</artnum><issn>2352-1872</issn><eissn>2352-1872</eissn><abstract>Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but are often neglected in lumbar spine DXA analysis. In addition, we tested the approach's ability to predict fractures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Prevention Study was used to train a convolutional neural network (CNN) for classification. The model was able to classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD measurements was 0.94. In each classification task, neural network visualizations indicated the model's predictive strategy. We conclude that deep learning could complement the well established DXA method for osteoporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in the future.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33997147</pmid><doi>10.1016/j.bonr.2021.101070</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-1872
ispartof Bone Reports, 2021-06, Vol.14, p.101070-101070, Article 101070
issn 2352-1872
2352-1872
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_269a660dff4141c79db473c488914663
source ScienceDirect; PubMed Central
subjects Deep learning
Degeneration
Dual-energy X-ray absorptiometry
Fracture risk
Lumbar spine
Scoliosis
Trabecular bone score
title Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20pathological%20features%20and%20predicting%20fracture%20risk%20from%20dual-energy%20X-ray%20absorptiometry%20images%20using%20deep%20learning&rft.jtitle=Bone%20Reports&rft.au=Nissinen,%20Tomi&rft.date=2021-06-01&rft.volume=14&rft.spage=101070&rft.epage=101070&rft.pages=101070-101070&rft.artnum=101070&rft.issn=2352-1872&rft.eissn=2352-1872&rft_id=info:doi/10.1016/j.bonr.2021.101070&rft_dat=%3Cproquest_doaj_%3E2528432247%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-90c7c57e1d2c7f2fcc220805237b9f7d3863c595523b20b6d92819f60d4633fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528432247&rft_id=info:pmid/33997147&rfr_iscdi=true