Loading…
In Vitro Probiotic Properties and DNA Protection Activity of Yeast and Lactic Acid Bacteria Isolated from A Honey-Based Kefir Beverage
The probiotic characteristics of three acid-tolerant microbial strains, viz., Lactobacillus satsumensis LPBF1, Leuconostoc mesenteroides LPBF2 and Saccharomyes cerevisiae LPBF3, isolated from a honey-based kefir functional beverage, were studied following the requirements established by the Food and...
Saved in:
Published in: | Foods 2019-10, Vol.8 (10), p.485 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The probiotic characteristics of three acid-tolerant microbial strains, viz., Lactobacillus satsumensis LPBF1, Leuconostoc mesenteroides LPBF2 and Saccharomyes cerevisiae LPBF3, isolated from a honey-based kefir functional beverage, were studied following the requirements established by the Food and Agriculture Organization of the United Nation/World Health Organization (FAO/WHO), including host-associated stress resistance, epithelium adhesion ability, and antimicrobial activity. The three microbial strains tolerated different pH values (2.0, 3.0, 4.0 and 7.0) and bile salt concentrations (0.3% and 0.6%), and survive in the presence of simulated gastric juice, which are conditions imposed by the gastrointestinal tract. In addition, they showed high percentages of hydrophobicity, auto aggregation and anti-pathogenic against Escherichia coli and Staphylococcus aureus, with no hemolytic activity. The protective capacity of human DNA through microbial treatment was investigated by single-cell gel electrophoresis (SCGE) comet assay. The three selected strains showed DNA protection effect against damage caused by hydroxyl radical (H2O2). However, when the S. cerevisiae treatment was applied, the most effective DNA protection index was observed, which can be associated to its high production of extracellular antioxidants as reveled by the 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) method. These results indicated that the three selected microbial strains could be useful for preventing oxidative DNA damage and cellular oxidation in food products. As well-adapted microbial cells, the selected strains can be used for production of non-dairy functional beverages, especially for vegans and/or vegetarians and lactose intolerants. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods8100485 |