Loading…
Defoliation intensity and leaf area index recovery in defoliated swards: implications for forage accumulation
This study evaluated the leaf area index (LAI) recovery mechanisms and forage accumulation rates on the regrowth of different grass species subjected to different defoliation intensities. For that purpose, plots of Pennisetum clandestinum (kikuyugrass), Lolium multiflorum (annual ryegrass), and Aven...
Saved in:
Published in: | Scientia agricola 2021-01, Vol.78 (2) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study evaluated the leaf area index (LAI) recovery mechanisms and forage accumulation rates on the regrowth of different grass species subjected to different defoliation intensities. For that purpose, plots of Pennisetum clandestinum (kikuyugrass), Lolium multiflorum (annual ryegrass), and Avena strigosa (black oats) were defoliated from 20 to 80 % of their initial heights (25, 20, and 25 cm, respectively). At different increments in height, forage samples were collected to ground level and used to estimate tiller population density (TPD), leaf area per tiller (LA), and forage mass. From these data, we calculated the leaf area index (LAI), average leaf area index (aLAI), and average and instantaneous forage accumulation rate (FAR and IFAR, respectively). Data were plotted over time (days) to describe LAI recovery and forage accumulation rates. As the defoliation intensity increased, greater canopy heights were needed for pastures to achieve their maximum forage accumulation rates, which required longer regrowth intervals. The need for high tiller recruitment after defoliation, which delayed canopy LAI recovery, seemed to be one of the main cause. Thus, grazing management strategies that involve costly tiller recruitment could decrease both overall forage production and sward persistence over time. However, the plant ability to recover LAI after successive intense defoliations seems to be species-dependent and related to their phenotypic plasticity. |
---|---|
ISSN: | 1678-992X 1678-992X |
DOI: | 10.1590/1678-992x-2019-0095 |