Loading…
Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling
Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using...
Saved in:
Published in: | Quaternary science advances 2023-07, Vol.11, p.100083, Article 100083 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773 |
container_end_page | |
container_issue | |
container_start_page | 100083 |
container_title | Quaternary science advances |
container_volume | 11 |
creator | Luu, Chinh Ha, Hang Bui, Quynh Duy Luong, Ngoc-Dung Khuc, Dong Thanh Vu, Hung Nguyen, Dinh Quoc |
description | Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management.
[Display omitted]
•Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management. |
doi_str_mv | 10.1016/j.qsa.2023.100083 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666033423000151</els_id><doaj_id>oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb</doaj_id><sourcerecordid>S2666033423000151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKUfwM0_0GI7iZOKE6ooVKrEBbhaG3tTtnLjYieg_j0uRYgTl33M7ox2J8uuBZ8JLtTNdvYeYSa5zFPPeZ2fZSOplJryPC_O_9SX2STGbVqRteC1KEfZbukgvrHWeW8ZdJa5FKIjiywO0eC-p4Yc9Yc0BHeIFFnrAwO280PXA3V-iCx4sJ9wYNSxV8K-gx0bInUbFvfQE7i0bNEl4Cq7aMFFnPzkcfayvH9ePE7XTw-rxd16agqu-qltTFHM-ZxLIRqDlQAQuQUUTYktR4VGSIGNrEsoVCURSis5tEKCkqWsqnycrU661sNW7wPtIBy0B9LfgA8bDaEn41BL1ShuIa84mMICQIumrtsin_NCKWySljhpmeBjDNj-6gmuj_brrU7266P9-mR_4tyeOJie_CAMOhrCzqClgKZPV9A_7C_bio-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</creator><creatorcontrib>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</creatorcontrib><description>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management.
[Display omitted]
•Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</description><identifier>ISSN: 2666-0334</identifier><identifier>EISSN: 2666-0334</identifier><identifier>DOI: 10.1016/j.qsa.2023.100083</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Flash flood ; Geospatial modeling ; Landslide ; Machine learning ; Transportation</subject><ispartof>Quaternary science advances, 2023-07, Vol.11, p.100083, Article 100083</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</citedby><cites>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</cites><orcidid>0000-0002-3128-3774 ; 0000-0002-1889-5290 ; 0000-0003-1489-8918 ; 0000-0002-0502-1682 ; 0000-0003-3844-091X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666033423000151$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Luu, Chinh</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Luong, Ngoc-Dung</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Vu, Hung</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><title>Quaternary science advances</title><description>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management.
[Display omitted]
•Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</description><subject>Flash flood</subject><subject>Geospatial modeling</subject><subject>Landslide</subject><subject>Machine learning</subject><subject>Transportation</subject><issn>2666-0334</issn><issn>2666-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UMtOwzAQjBBIVKUfwM0_0GI7iZOKE6ooVKrEBbhaG3tTtnLjYieg_j0uRYgTl33M7ox2J8uuBZ8JLtTNdvYeYSa5zFPPeZ2fZSOplJryPC_O_9SX2STGbVqRteC1KEfZbukgvrHWeW8ZdJa5FKIjiywO0eC-p4Yc9Yc0BHeIFFnrAwO280PXA3V-iCx4sJ9wYNSxV8K-gx0bInUbFvfQE7i0bNEl4Cq7aMFFnPzkcfayvH9ePE7XTw-rxd16agqu-qltTFHM-ZxLIRqDlQAQuQUUTYktR4VGSIGNrEsoVCURSis5tEKCkqWsqnycrU661sNW7wPtIBy0B9LfgA8bDaEn41BL1ShuIa84mMICQIumrtsin_NCKWySljhpmeBjDNj-6gmuj_brrU7266P9-mR_4tyeOJie_CAMOhrCzqClgKZPV9A_7C_bio-A</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Luu, Chinh</creator><creator>Ha, Hang</creator><creator>Bui, Quynh Duy</creator><creator>Luong, Ngoc-Dung</creator><creator>Khuc, Dong Thanh</creator><creator>Vu, Hung</creator><creator>Nguyen, Dinh Quoc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3128-3774</orcidid><orcidid>https://orcid.org/0000-0002-1889-5290</orcidid><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid><orcidid>https://orcid.org/0000-0002-0502-1682</orcidid><orcidid>https://orcid.org/0000-0003-3844-091X</orcidid></search><sort><creationdate>202307</creationdate><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><author>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Flash flood</topic><topic>Geospatial modeling</topic><topic>Landslide</topic><topic>Machine learning</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luu, Chinh</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Luong, Ngoc-Dung</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Vu, Hung</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Quaternary science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luu, Chinh</au><au>Ha, Hang</au><au>Bui, Quynh Duy</au><au>Luong, Ngoc-Dung</au><au>Khuc, Dong Thanh</au><au>Vu, Hung</au><au>Nguyen, Dinh Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</atitle><jtitle>Quaternary science advances</jtitle><date>2023-07</date><risdate>2023</risdate><volume>11</volume><spage>100083</spage><pages>100083-</pages><artnum>100083</artnum><issn>2666-0334</issn><eissn>2666-0334</eissn><abstract>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management.
[Display omitted]
•Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.qsa.2023.100083</doi><orcidid>https://orcid.org/0000-0002-3128-3774</orcidid><orcidid>https://orcid.org/0000-0002-1889-5290</orcidid><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid><orcidid>https://orcid.org/0000-0002-0502-1682</orcidid><orcidid>https://orcid.org/0000-0003-3844-091X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-0334 |
ispartof | Quaternary science advances, 2023-07, Vol.11, p.100083, Article 100083 |
issn | 2666-0334 2666-0334 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb |
source | ScienceDirect - Connect here FIRST to enable access |
subjects | Flash flood Geospatial modeling Landslide Machine learning Transportation |
title | Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flash%20flood%20and%20landslide%20susceptibility%20analysis%20for%20a%20mountainous%20roadway%20in%20Vietnam%20using%20spatial%20modeling&rft.jtitle=Quaternary%20science%20advances&rft.au=Luu,%20Chinh&rft.date=2023-07&rft.volume=11&rft.spage=100083&rft.pages=100083-&rft.artnum=100083&rft.issn=2666-0334&rft.eissn=2666-0334&rft_id=info:doi/10.1016/j.qsa.2023.100083&rft_dat=%3Celsevier_doaj_%3ES2666033423000151%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |