Loading…

Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling

Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary science advances 2023-07, Vol.11, p.100083, Article 100083
Main Authors: Luu, Chinh, Ha, Hang, Bui, Quynh Duy, Luong, Ngoc-Dung, Khuc, Dong Thanh, Vu, Hung, Nguyen, Dinh Quoc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773
cites cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773
container_end_page
container_issue
container_start_page 100083
container_title Quaternary science advances
container_volume 11
creator Luu, Chinh
Ha, Hang
Bui, Quynh Duy
Luong, Ngoc-Dung
Khuc, Dong Thanh
Vu, Hung
Nguyen, Dinh Quoc
description Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management. [Display omitted] •Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.
doi_str_mv 10.1016/j.qsa.2023.100083
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666033423000151</els_id><doaj_id>oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb</doaj_id><sourcerecordid>S2666033423000151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKUfwM0_0GI7iZOKE6ooVKrEBbhaG3tTtnLjYieg_j0uRYgTl33M7ox2J8uuBZ8JLtTNdvYeYSa5zFPPeZ2fZSOplJryPC_O_9SX2STGbVqRteC1KEfZbukgvrHWeW8ZdJa5FKIjiywO0eC-p4Yc9Yc0BHeIFFnrAwO280PXA3V-iCx4sJ9wYNSxV8K-gx0bInUbFvfQE7i0bNEl4Cq7aMFFnPzkcfayvH9ePE7XTw-rxd16agqu-qltTFHM-ZxLIRqDlQAQuQUUTYktR4VGSIGNrEsoVCURSis5tEKCkqWsqnycrU661sNW7wPtIBy0B9LfgA8bDaEn41BL1ShuIa84mMICQIumrtsin_NCKWySljhpmeBjDNj-6gmuj_brrU7266P9-mR_4tyeOJie_CAMOhrCzqClgKZPV9A_7C_bio-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</creator><creatorcontrib>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</creatorcontrib><description>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management. [Display omitted] •Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</description><identifier>ISSN: 2666-0334</identifier><identifier>EISSN: 2666-0334</identifier><identifier>DOI: 10.1016/j.qsa.2023.100083</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Flash flood ; Geospatial modeling ; Landslide ; Machine learning ; Transportation</subject><ispartof>Quaternary science advances, 2023-07, Vol.11, p.100083, Article 100083</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</citedby><cites>FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</cites><orcidid>0000-0002-3128-3774 ; 0000-0002-1889-5290 ; 0000-0003-1489-8918 ; 0000-0002-0502-1682 ; 0000-0003-3844-091X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666033423000151$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Luu, Chinh</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Luong, Ngoc-Dung</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Vu, Hung</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><title>Quaternary science advances</title><description>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management. [Display omitted] •Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</description><subject>Flash flood</subject><subject>Geospatial modeling</subject><subject>Landslide</subject><subject>Machine learning</subject><subject>Transportation</subject><issn>2666-0334</issn><issn>2666-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UMtOwzAQjBBIVKUfwM0_0GI7iZOKE6ooVKrEBbhaG3tTtnLjYieg_j0uRYgTl33M7ox2J8uuBZ8JLtTNdvYeYSa5zFPPeZ2fZSOplJryPC_O_9SX2STGbVqRteC1KEfZbukgvrHWeW8ZdJa5FKIjiywO0eC-p4Yc9Yc0BHeIFFnrAwO280PXA3V-iCx4sJ9wYNSxV8K-gx0bInUbFvfQE7i0bNEl4Cq7aMFFnPzkcfayvH9ePE7XTw-rxd16agqu-qltTFHM-ZxLIRqDlQAQuQUUTYktR4VGSIGNrEsoVCURSis5tEKCkqWsqnycrU661sNW7wPtIBy0B9LfgA8bDaEn41BL1ShuIa84mMICQIumrtsin_NCKWySljhpmeBjDNj-6gmuj_brrU7266P9-mR_4tyeOJie_CAMOhrCzqClgKZPV9A_7C_bio-A</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Luu, Chinh</creator><creator>Ha, Hang</creator><creator>Bui, Quynh Duy</creator><creator>Luong, Ngoc-Dung</creator><creator>Khuc, Dong Thanh</creator><creator>Vu, Hung</creator><creator>Nguyen, Dinh Quoc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3128-3774</orcidid><orcidid>https://orcid.org/0000-0002-1889-5290</orcidid><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid><orcidid>https://orcid.org/0000-0002-0502-1682</orcidid><orcidid>https://orcid.org/0000-0003-3844-091X</orcidid></search><sort><creationdate>202307</creationdate><title>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</title><author>Luu, Chinh ; Ha, Hang ; Bui, Quynh Duy ; Luong, Ngoc-Dung ; Khuc, Dong Thanh ; Vu, Hung ; Nguyen, Dinh Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Flash flood</topic><topic>Geospatial modeling</topic><topic>Landslide</topic><topic>Machine learning</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luu, Chinh</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Luong, Ngoc-Dung</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Vu, Hung</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Quaternary science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luu, Chinh</au><au>Ha, Hang</au><au>Bui, Quynh Duy</au><au>Luong, Ngoc-Dung</au><au>Khuc, Dong Thanh</au><au>Vu, Hung</au><au>Nguyen, Dinh Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling</atitle><jtitle>Quaternary science advances</jtitle><date>2023-07</date><risdate>2023</risdate><volume>11</volume><spage>100083</spage><pages>100083-</pages><artnum>100083</artnum><issn>2666-0334</issn><eissn>2666-0334</eissn><abstract>Flash floods and landslides are dangerous natural hazards in hilly areas. They often occur extensively and potentially cause widespread destruction to agriculture, infrastructure, roads, houses, and human beings. This research aimed to analyze the hazard susceptibility on a mountainous roadway using advanced Machine Learning (ML) models. We conducted field surveys to collect data on flash flood and landslide locations in 2017, 2018, and 2019 on a particular roadway in Vietnam, National Highway 6, consisting of 88 flash flood sites and 235 landslide sites. The state-of-art ML models were utilized for the predictive modeling, including AdaBoost-RBF, Bagging-RBF, MultiBoostAB-RBF, and Random Sub-spaceRBF, with Radial Basis Function (RBF) serving as the primary classifier. The AdaBoost-RBF model outperformed all others in predicting landslide and flash flood vulnerability. The resulting map showed that 44.89% or 14,183 ha is in very high susceptibility zones, 15.55% or 4914 ha is in high susceptibility zones, 10.37% or 3.275 ha is in moderate susceptibility zones, 13.69% or 4324 ha is in low susceptibility zones, and 15.50% or 4899 ha is in very low susceptibility zones. A detailed map of the areas where landslides and flash floods are most likely to occur on the roadway might provide local authorities with crucial information for disaster management. [Display omitted] •Modeling landslide and flash flood susceptibility for a mountainous roadway.•Advanced machine learning algorithms were developed for susceptibility modeling.•Hazard assessment maps may aid disaster risk mitigation and management.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.qsa.2023.100083</doi><orcidid>https://orcid.org/0000-0002-3128-3774</orcidid><orcidid>https://orcid.org/0000-0002-1889-5290</orcidid><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid><orcidid>https://orcid.org/0000-0002-0502-1682</orcidid><orcidid>https://orcid.org/0000-0003-3844-091X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-0334
ispartof Quaternary science advances, 2023-07, Vol.11, p.100083, Article 100083
issn 2666-0334
2666-0334
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_26b60da370ac4daaafec88f4390466eb
source ScienceDirect - Connect here FIRST to enable access
subjects Flash flood
Geospatial modeling
Landslide
Machine learning
Transportation
title Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flash%20flood%20and%20landslide%20susceptibility%20analysis%20for%20a%20mountainous%20roadway%20in%20Vietnam%20using%20spatial%20modeling&rft.jtitle=Quaternary%20science%20advances&rft.au=Luu,%20Chinh&rft.date=2023-07&rft.volume=11&rft.spage=100083&rft.pages=100083-&rft.artnum=100083&rft.issn=2666-0334&rft.eissn=2666-0334&rft_id=info:doi/10.1016/j.qsa.2023.100083&rft_dat=%3Celsevier_doaj_%3ES2666033423000151%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-dbc449090211bce71aa13dae1b5ef0e6ec121eb285a4672ea5d20af12a6252773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true