Loading…

Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation

In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasou...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3518
Main Authors: Ghaderi, Nasser, Hasheminejad, Navid, Dirckx, Joris, Vanlanduit, Steve
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3
container_end_page
container_issue 11
container_start_page 3518
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Ghaderi, Nasser
Hasheminejad, Navid
Dirckx, Joris
Vanlanduit, Steve
description In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.
doi_str_mv 10.3390/s24113518
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797903302</galeid><doaj_id>oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0</doaj_id><sourcerecordid>A797903302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</originalsourceid><addsrcrecordid>eNpdkl1vFCEUhonR2Lp64R8wJN7Yi6187QBXZrNpa5MmNdF6Sxg47LKZGVaYafTfi07dtIYQTg4P7-HAi9BbSs451-RjYYJSvqLqGTqlgomlYow8fxSfoFel7AlhnHP1Ep1wpbTgRJ-i24ufhy7lOGzxuAN8VwCngDep83g99qkcdpCjw186W3qLQ8r4a5oGj22d32Ob7RjTgK9ggDl8jV4E2xV487Au0N3lxbfN5-XN7dX1Zn2zdFzrcdl6x7wNK9dwH6SgIDxrWkFYEE5a58ExaD1Y0Fw0ikOrpYfAidctaZrg-AJdz7o-2b055Njb_MskG83fRMpbY_MYXQemCoNq2pXXohErp7X1wpGgg9SqFiNV69OsdZjaHryDYcy2eyL6dGeIO7NN94ZSKoVudFX48KCQ048Jymj6WBx0nR0gTcVwIokijFFV0ff_ofs05aG-VaUaKbjkWlbqfKa2tnYQh5BqYVeHhz66NECINb-WWmrCef3XBTqbD7icSskQjtenxPwxiTmapLLvHvd7JP-5gv8G18C3Tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067437397</pqid></control><display><type>article</type><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</creator><creatorcontrib>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</creatorcontrib><description>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24113518</identifier><identifier>PMID: 38894309</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acoustic wave visualization ; Acoustics ; Analysis ; Atmospheric pressure ; Cold ; cold atmospheric plasma ; Experiments ; Humidity ; Lasers ; Measurement techniques ; mechanical excitation ; Plasma ; Polymethylmethacrylate ; scanning Laser Doppler Vibrometer ; Sensors ; Signal processing ; Sound waves ; Ultrasonic imaging ; ultrasound sensor ; Visualization</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3518</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</cites><orcidid>0000-0002-0796-6321 ; 0000-0002-7975-1338 ; 0009-0002-7177-2887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067437397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067437397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaderi, Nasser</creatorcontrib><creatorcontrib>Hasheminejad, Navid</creatorcontrib><creatorcontrib>Dirckx, Joris</creatorcontrib><creatorcontrib>Vanlanduit, Steve</creatorcontrib><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</description><subject>acoustic wave visualization</subject><subject>Acoustics</subject><subject>Analysis</subject><subject>Atmospheric pressure</subject><subject>Cold</subject><subject>cold atmospheric plasma</subject><subject>Experiments</subject><subject>Humidity</subject><subject>Lasers</subject><subject>Measurement techniques</subject><subject>mechanical excitation</subject><subject>Plasma</subject><subject>Polymethylmethacrylate</subject><subject>scanning Laser Doppler Vibrometer</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sound waves</subject><subject>Ultrasonic imaging</subject><subject>ultrasound sensor</subject><subject>Visualization</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1vFCEUhonR2Lp64R8wJN7Yi6187QBXZrNpa5MmNdF6Sxg47LKZGVaYafTfi07dtIYQTg4P7-HAi9BbSs451-RjYYJSvqLqGTqlgomlYow8fxSfoFel7AlhnHP1Ep1wpbTgRJ-i24ufhy7lOGzxuAN8VwCngDep83g99qkcdpCjw186W3qLQ8r4a5oGj22d32Ob7RjTgK9ggDl8jV4E2xV487Au0N3lxbfN5-XN7dX1Zn2zdFzrcdl6x7wNK9dwH6SgIDxrWkFYEE5a58ExaD1Y0Fw0ikOrpYfAidctaZrg-AJdz7o-2b055Njb_MskG83fRMpbY_MYXQemCoNq2pXXohErp7X1wpGgg9SqFiNV69OsdZjaHryDYcy2eyL6dGeIO7NN94ZSKoVudFX48KCQ048Jymj6WBx0nR0gTcVwIokijFFV0ff_ofs05aG-VaUaKbjkWlbqfKa2tnYQh5BqYVeHhz66NECINb-WWmrCef3XBTqbD7icSskQjtenxPwxiTmapLLvHvd7JP-5gv8G18C3Tg</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Ghaderi, Nasser</creator><creator>Hasheminejad, Navid</creator><creator>Dirckx, Joris</creator><creator>Vanlanduit, Steve</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0796-6321</orcidid><orcidid>https://orcid.org/0000-0002-7975-1338</orcidid><orcidid>https://orcid.org/0009-0002-7177-2887</orcidid></search><sort><creationdate>20240530</creationdate><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><author>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acoustic wave visualization</topic><topic>Acoustics</topic><topic>Analysis</topic><topic>Atmospheric pressure</topic><topic>Cold</topic><topic>cold atmospheric plasma</topic><topic>Experiments</topic><topic>Humidity</topic><topic>Lasers</topic><topic>Measurement techniques</topic><topic>mechanical excitation</topic><topic>Plasma</topic><topic>Polymethylmethacrylate</topic><topic>scanning Laser Doppler Vibrometer</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sound waves</topic><topic>Ultrasonic imaging</topic><topic>ultrasound sensor</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaderi, Nasser</creatorcontrib><creatorcontrib>Hasheminejad, Navid</creatorcontrib><creatorcontrib>Dirckx, Joris</creatorcontrib><creatorcontrib>Vanlanduit, Steve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaderi, Nasser</au><au>Hasheminejad, Navid</au><au>Dirckx, Joris</au><au>Vanlanduit, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>3518</spage><pages>3518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894309</pmid><doi>10.3390/s24113518</doi><orcidid>https://orcid.org/0000-0002-0796-6321</orcidid><orcidid>https://orcid.org/0000-0002-7975-1338</orcidid><orcidid>https://orcid.org/0009-0002-7177-2887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3518
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0
source Publicly Available Content (ProQuest); PubMed Central
subjects acoustic wave visualization
Acoustics
Analysis
Atmospheric pressure
Cold
cold atmospheric plasma
Experiments
Humidity
Lasers
Measurement techniques
mechanical excitation
Plasma
Polymethylmethacrylate
scanning Laser Doppler Vibrometer
Sensors
Signal processing
Sound waves
Ultrasonic imaging
ultrasound sensor
Visualization
title Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Use%20of%20Cold%20Atmospheric%20Plasma%20for%20Sound%20and%20Vibration%20Generation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ghaderi,%20Nasser&rft.date=2024-05-30&rft.volume=24&rft.issue=11&rft.spage=3518&rft.pages=3518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24113518&rft_dat=%3Cgale_doaj_%3EA797903302%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067437397&rft_id=info:pmid/38894309&rft_galeid=A797903302&rfr_iscdi=true