Loading…
Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation
In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasou...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3518 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3 |
container_end_page | |
container_issue | 11 |
container_start_page | 3518 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Ghaderi, Nasser Hasheminejad, Navid Dirckx, Joris Vanlanduit, Steve |
description | In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method. |
doi_str_mv | 10.3390/s24113518 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797903302</galeid><doaj_id>oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0</doaj_id><sourcerecordid>A797903302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</originalsourceid><addsrcrecordid>eNpdkl1vFCEUhonR2Lp64R8wJN7Yi6187QBXZrNpa5MmNdF6Sxg47LKZGVaYafTfi07dtIYQTg4P7-HAi9BbSs451-RjYYJSvqLqGTqlgomlYow8fxSfoFel7AlhnHP1Ep1wpbTgRJ-i24ufhy7lOGzxuAN8VwCngDep83g99qkcdpCjw186W3qLQ8r4a5oGj22d32Ob7RjTgK9ggDl8jV4E2xV487Au0N3lxbfN5-XN7dX1Zn2zdFzrcdl6x7wNK9dwH6SgIDxrWkFYEE5a58ExaD1Y0Fw0ikOrpYfAidctaZrg-AJdz7o-2b055Njb_MskG83fRMpbY_MYXQemCoNq2pXXohErp7X1wpGgg9SqFiNV69OsdZjaHryDYcy2eyL6dGeIO7NN94ZSKoVudFX48KCQ048Jymj6WBx0nR0gTcVwIokijFFV0ff_ofs05aG-VaUaKbjkWlbqfKa2tnYQh5BqYVeHhz66NECINb-WWmrCef3XBTqbD7icSskQjtenxPwxiTmapLLvHvd7JP-5gv8G18C3Tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067437397</pqid></control><display><type>article</type><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</creator><creatorcontrib>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</creatorcontrib><description>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24113518</identifier><identifier>PMID: 38894309</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acoustic wave visualization ; Acoustics ; Analysis ; Atmospheric pressure ; Cold ; cold atmospheric plasma ; Experiments ; Humidity ; Lasers ; Measurement techniques ; mechanical excitation ; Plasma ; Polymethylmethacrylate ; scanning Laser Doppler Vibrometer ; Sensors ; Signal processing ; Sound waves ; Ultrasonic imaging ; ultrasound sensor ; Visualization</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3518</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</cites><orcidid>0000-0002-0796-6321 ; 0000-0002-7975-1338 ; 0009-0002-7177-2887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067437397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067437397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghaderi, Nasser</creatorcontrib><creatorcontrib>Hasheminejad, Navid</creatorcontrib><creatorcontrib>Dirckx, Joris</creatorcontrib><creatorcontrib>Vanlanduit, Steve</creatorcontrib><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</description><subject>acoustic wave visualization</subject><subject>Acoustics</subject><subject>Analysis</subject><subject>Atmospheric pressure</subject><subject>Cold</subject><subject>cold atmospheric plasma</subject><subject>Experiments</subject><subject>Humidity</subject><subject>Lasers</subject><subject>Measurement techniques</subject><subject>mechanical excitation</subject><subject>Plasma</subject><subject>Polymethylmethacrylate</subject><subject>scanning Laser Doppler Vibrometer</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sound waves</subject><subject>Ultrasonic imaging</subject><subject>ultrasound sensor</subject><subject>Visualization</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1vFCEUhonR2Lp64R8wJN7Yi6187QBXZrNpa5MmNdF6Sxg47LKZGVaYafTfi07dtIYQTg4P7-HAi9BbSs451-RjYYJSvqLqGTqlgomlYow8fxSfoFel7AlhnHP1Ep1wpbTgRJ-i24ufhy7lOGzxuAN8VwCngDep83g99qkcdpCjw186W3qLQ8r4a5oGj22d32Ob7RjTgK9ggDl8jV4E2xV487Au0N3lxbfN5-XN7dX1Zn2zdFzrcdl6x7wNK9dwH6SgIDxrWkFYEE5a58ExaD1Y0Fw0ikOrpYfAidctaZrg-AJdz7o-2b055Njb_MskG83fRMpbY_MYXQemCoNq2pXXohErp7X1wpGgg9SqFiNV69OsdZjaHryDYcy2eyL6dGeIO7NN94ZSKoVudFX48KCQ048Jymj6WBx0nR0gTcVwIokijFFV0ff_ofs05aG-VaUaKbjkWlbqfKa2tnYQh5BqYVeHhz66NECINb-WWmrCef3XBTqbD7icSskQjtenxPwxiTmapLLvHvd7JP-5gv8G18C3Tg</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Ghaderi, Nasser</creator><creator>Hasheminejad, Navid</creator><creator>Dirckx, Joris</creator><creator>Vanlanduit, Steve</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0796-6321</orcidid><orcidid>https://orcid.org/0000-0002-7975-1338</orcidid><orcidid>https://orcid.org/0009-0002-7177-2887</orcidid></search><sort><creationdate>20240530</creationdate><title>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</title><author>Ghaderi, Nasser ; Hasheminejad, Navid ; Dirckx, Joris ; Vanlanduit, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acoustic wave visualization</topic><topic>Acoustics</topic><topic>Analysis</topic><topic>Atmospheric pressure</topic><topic>Cold</topic><topic>cold atmospheric plasma</topic><topic>Experiments</topic><topic>Humidity</topic><topic>Lasers</topic><topic>Measurement techniques</topic><topic>mechanical excitation</topic><topic>Plasma</topic><topic>Polymethylmethacrylate</topic><topic>scanning Laser Doppler Vibrometer</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sound waves</topic><topic>Ultrasonic imaging</topic><topic>ultrasound sensor</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaderi, Nasser</creatorcontrib><creatorcontrib>Hasheminejad, Navid</creatorcontrib><creatorcontrib>Dirckx, Joris</creatorcontrib><creatorcontrib>Vanlanduit, Steve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaderi, Nasser</au><au>Hasheminejad, Navid</au><au>Dirckx, Joris</au><au>Vanlanduit, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>3518</spage><pages>3518-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894309</pmid><doi>10.3390/s24113518</doi><orcidid>https://orcid.org/0000-0002-0796-6321</orcidid><orcidid>https://orcid.org/0000-0002-7975-1338</orcidid><orcidid>https://orcid.org/0009-0002-7177-2887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3518 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_26be86b5d94645c99ad4c0f9f798c7a0 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | acoustic wave visualization Acoustics Analysis Atmospheric pressure Cold cold atmospheric plasma Experiments Humidity Lasers Measurement techniques mechanical excitation Plasma Polymethylmethacrylate scanning Laser Doppler Vibrometer Sensors Signal processing Sound waves Ultrasonic imaging ultrasound sensor Visualization |
title | Exploring the Use of Cold Atmospheric Plasma for Sound and Vibration Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Use%20of%20Cold%20Atmospheric%20Plasma%20for%20Sound%20and%20Vibration%20Generation&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ghaderi,%20Nasser&rft.date=2024-05-30&rft.volume=24&rft.issue=11&rft.spage=3518&rft.pages=3518-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24113518&rft_dat=%3Cgale_doaj_%3EA797903302%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-bdc2daf5c63df741e4d26b402f4c7acdec2ebdeae934683eb97def30d9b066fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067437397&rft_id=info:pmid/38894309&rft_galeid=A797903302&rfr_iscdi=true |