Loading…
DU-CG-STAP Method Based on Sparse Recovery and Unsupervised Learning for Airborne Radar Clutter Suppression
With a small number of training range cells, sparse recovery (SR)-based space–time adaptive processing (STAP) methods can help to suppress clutter and detect targets effectively for airborne radar. However, SR algorithms usually have problems of high computational complexity and parameter-setting di...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-07, Vol.14 (14), p.3472 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With a small number of training range cells, sparse recovery (SR)-based space–time adaptive processing (STAP) methods can help to suppress clutter and detect targets effectively for airborne radar. However, SR algorithms usually have problems of high computational complexity and parameter-setting difficulties. More importantly, non-ideal factors in practice will lead to the degraded clutter suppression performance of SR-STAP methods. Based on the idea of deep unfolding (DU), a space–time two-dimensional (2D)-decoupled SR network, namely 2DMA-Net, is constructed in this paper to achieve a fast clutter spectrum estimation without complicated parameter tuning. For 2DMA-Net, without using labeled data, a self-supervised training method based on raw radar data is implemented. Then, to filter out the interferences caused by non-ideal factors, a cycle-consistent adversarial network (CycleGAN) is used as the image enhancement process for the clutter spectrum obtained using 2DMA-Net. For CycleGAN, an unsupervised training method based on unpaired data is implemented. Finally, 2DMA-Net and CycleGAN are cascaded to achieve a fast and accurate estimation of the clutter spectrum, resulting in the DU-CG-STAP method with unsupervised learning, as demonstrated in this paper. The simulation results show that, compared to existing typical SR-STAP methods, the proposed method can simultaneously improve clutter suppression performance and reduce computational complexity. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14143472 |